Supplementary Material for
Texturify: Generating Textures on
3D Shape Surfaces

Yawar Siddiqui', Justus Thies?, Fangchang Ma?, Qi Shan?,
Matthias Niefner!, and Angela Dai'

! Technical University of Munich
2 Max Planck Institute for Intelligent Systems
3 Apple

1 Implementation Details

We use a hierarchy of n = 6 quad-meshes with number of faces as (24576, 6144,
1536, 384, 96, 24) from finest to coarsest resolution respectively. Pooling layers
use a mean operation for aggregating features. During training, each mesh is
rendered at a resolution of 512 x 512 across 4 random viewpoints. The patch
consistency discriminator uses patches cropped to a resolution of 64 x 64, with 4
patches extracted from each generated viewpoint, yielding a total of 16 patches
as input. The generator uses an empirically determined weighting of 10:1 for
losses coming from the image discriminator and the patch discriminator.

Our Texturify model is implemented using Pytorch and trained using Adam [0]
with learning rates of 1 x 1074, 2 x 1073 and 1 x 103 for the encoder, decoder
and both discriminators respectively. We train on 2 NVIDIA A6000s for 70k
iterations (~ 80 hours) until convergence. We plan to open source our model,
data and data-processing scripts.

2 Network Architecture

A detailed description of the network for our method can be found in Fig. 1
and 2. Fig. 1 details the encoder, while Fig. 2 displays the StyleGAN2 inspired
decoder. Both are based on our 4-RoSy parametrization and the FaceConv and
pooling operations presented in the main paper.

Singularities. Singularities are vertices on a quad mesh that do not have a
valancy of 4. Our method uses zero-padding on faces with singularity vertices
to enforce a fixed size neighborhood. Quad meshes parameterized by quadriflow
have few singularities. Specifically, we get 0.89% vertices with singularities for
Chair category, and 1.95% for Car category. This is comparable to the proportion
of pixel locations that need padding in a 256 x 256 image (1.56%).

FaceConvs. As described in the main paper, our approach uses FaceConvs as
operator on a 4-RoSy surface. A similar 4-RoSy parameterization has been used

2 Y. Siddiqui et al.

faces 24576 24576 6144 1536 384 96 24 24 Input features

[Leaky ReLU] |Linea1‘ Layer |

Normals

FaceResNet Block
Pool
Pool
Pool
Pool
FaceConv

features 3+3 32432 32432 64 128 128 128 256 256 |256

Leaky ReLU
'

To decoder

(a) Encoder Architecture (b) FaceResNet Block

Fig.1. Encoder architecture. (a) The encoder takes in face normals and curvature
at the finest resolution of the hierarchy and extracts features using FaceResNet blocks
(b). Features are extracted at all levels of the hierarchy using inter hierarchy pooling
and are passed on to the decoder in a U-Net style with skip connections (see Fig. 2).
(b) A FaceResNet block is a ResNet block that uses FaceConv instead of Conv2D, and
therefore can operate on surface of the mesh.

in TextureNet [5] for the segmentation of point clouds. Instead of our FaceConvs,
which use Cartesian ordering to resolve the 4 way ambiguity, TextureNet intro-
duced TextureConvs a 4-RoSy surface convolutional operator. In Table. 1, we
modify our proposed method and replace the FaceConvs with these Texture-
Convs. We observe that while TextureConvs work reasonably well for the chair
category, it struggles with the placement of headlights and the front grill for the
car category (Fig. 4). GraphConvs. While GCNs have been shown to work for

part segmentation, they can also be adapted to work with such a vertex color
representation by treating triangle meshes as graphs. We train a baseline using a
graph convolution network for texture generation. In particular, we replace the
FaceConvs in Texturify with SAGEConvs [4] which we found to be most effective
amongst the graph convolution variants we tested. Since weight modulation is
not trivial in a message passing framework, we condition the generated features
on style using concatenation. This GCN variant achieves an FID and KID of
75.93 and 5.21 x 10~2 compared to our method’s FID and KID of 26.17 and
1.54 x 1072 on the chair dataset. Qualitative results are shown in Fig. 3.

Table 1. Comparison against a modified version of our network that uses Texture-
Conv [5] instead of FaceConvs on ShapeNet chairs and cars learned on real-world 2D
images. Our proposed FaceConvs lead to significantly better geometry-aware texture
synthesis, especially, on the car dataset (see Fig. 4).

Chairs Cars
Method KIDx10 2] | FIDJ | KIDx10 2] | FIDJ
TexureConv [5] 1.88 | 31.67 6.13 | 80.10
Ours 1.54 | 26.17 4.97 | 59.55

Texurify 3

S

Style ‘ ‘
faces 24 ‘24 96 384 1536 (6144 24576 24576

Learned
Noise

Synthesis Block 0
Synthesis Block 1
Synthesis Block 2
Synthesis Block 3
Synthesis Block 4
Synthesis Block 5

The 274 Synthesis Layer & Concat Not
present in Synthesis Block 0

features 512 256

256 256 128 128 128 64

features ToRGB does not use

(encoder) From Encoder The 2°4 Synthesis Layer does not use unpooling
unpooling in Synthesis Block 6 and noise
(a) Decoder Architecture (b) Synthesis Block (c) Synthesis & ToORGB Layers

Fig. 2. Decoder architecture. (a) The decoder is inspired by the StyleGAN2 generator,
but rather than operating on a 2D image hierarchy, it operates on quad mesh hierarchy.
A learned noise over a cube, which is always the coarsest resolution with 24 faces in
the hierarchy, is upsampled to a specific shape through a series of synthesis blocks that
take in surface features coming from the encode and the style codes. (b) A synthesis
block concatenates features coming from the encoder with the previous synthesis blocks
generated features, and passes them through synthesis layers, one of which unpools
them to a finer level in the hierarchy. Features generated at the current level are also
decoded to an RGB texture and added to the unpooled RGB texture coming from
previous layer. (c) Synthesis layer applies a FaceConv with weights modulated by a
style code to the input features, and optionally unpools and adds noise to it.

3 Baseline Methods

We describe the experimental setup for the various baseline comparisons with
state-of-the-art texture generation, along with an additional quantitative com-
parison on the Generated Image Quality Assessment (GIQA) metric [3] in Tab. 2
and additional qualitative comparisons in Fig. 6 and 7. The methods differ
mainly in their parametrization as discussed below.

Table 2. Comparison against state-of-the-art texture generation approaches on
ShapeNet chairs and cars learned on real-world 2D images.

Method Parameterization GIQ.AXN il

Chairs | Cars
Texture Fields [8] | Global Implicit 6.29 | 5.14
SPSG [2] Sparse 3D Grid 6.38 | 7.19
UV Baseline uv 729 | 7.84
LTG [10] uv 7.39 | 7.90
EG3D [1] Tri-plane Implicit 7.58 | 7.85
Ours 4-RoSy Field 7.73 | 7.99

TextureFields. For TextureFields [3], we use the official code and configuration
of its GAN variant. We found that training with purely real-world images made

4 Y. Siddiqui et al.

abdnt

Fig. 3. Results on chairs with graph convolutional generator instead of FaceConvs.

Input TextureConv Ours Input TextureConv Ours

a2l
ulu o L2

Fig. 4. Comparison with a modified version of our network using texture convolutions
from TextureNet [5].

the network unstable, so we used a mix (with a probability p = 0.5) of real
images and synthetic renders with ShapeNet textures.

SPSG. For the SPSG [2] inspired baseline, we use the exact same architecture
as ours (Fig. 1 and 2), except that instead of surface, the networks now operate
in a 3D grid. A TSDF grid at the finest resolution of 1282 is input to the encoder,
with features extracted and pooled using 3D ResNet blocks (ResNet block with
Conv3D) and trilinear downsampling operators. The decoder uses modulated
Conv3Ds instead of modulated FaceConvs and unpooling is performed using
trilinear upsampling of features. The last synthesis block uses sparse convolutions
because of memory constraints. The decoder outputs a 3D grid of RGB colors
instead of per face RGB colors. This color grid is rendered to an image with the
shape’s TSDF using SPSG’s TSDF differentiable rendering.

UV-Space. For the UV baseline, we again use broadly the same architecture
as ours. Here, instead of operating on surface using 4-RoSy parameterization,
we operate on the surface using UV parameterization. Specifically, we compute
the UV maps for the shapes in a fashion similar to LTG [10], i.e. using 6 views
(top, bottom, left, right, front, back) around the object. Input to the encoder are
the normal and curvature atlas maps. Features are extracted using vanilla 2D
ResNet blocks at multiple resolutions and passed to the decoder. The decoder is a
regular 2D StyleGAN conditioned (through concatenation like ours) on features
coming from encoder. It predicts texture atlases which are mapped to the shape
during differentiable rendering. This pipeline differs from LTG as it does not

Texurify 5

use SPADE-IN blocks for conditioning on silhouettes but instead conditions on
surface features extracted via the encoder. Further, this baseline synthesises a
single texture atlas unlike the multiple texture atlases in LTG.

EG-3D. Finally, the EG3D [1] inspired baseline architecture is shown in Fig. 5.
Here, given an input mesh and its 3D TSDF representation, a StyleGAN2 net-
work generates a triplane representation, while a 3D TSDF encoder encodes a
3D feature grid. An MLP decoder is then used to query face colors point in space,
based on the features projected on the triplane and the feature on the grid at
the query point. The mesh with it’s face colors is then differentiably rendered
and critiqued through a discriminator.

Feature Volume

Input Mesh
nput Mesh 8x8x8x256
vy,

128° TSDF
* Concatenated

Features

TSDF i [
Encoder

Average Pool

Real Images

Feature Maps

z
Latent Code 256x256x96

Shape with
Predicted Texture

To

l_':j| Discriminator

&

DiffRast Rendered
Images

StyleGAN2
Generator

Fig.5. EG3D [l] inspired baseline architecture. A StyleGAN2 generator outputs a
triplane representation with style conditioned on a mesh code. The input mesh repre-
sented as a TSDF grid is additionally encoded into an 8 feature volume. For points
on the mesh surface, features are sampled from the Triplane and 3D feature grid, con-
catenated, and decoded via an MLP to get face colors. The resulting mesh with face
colors is differentiably rendered and critiqued by a discriminator.

4 Discussion & Outlook

Our method learns to texture 3D objects from in-the-wild image datasets. It
exhibits consistent global and local structural details and can also be used for
text-based texture synthesis. To this end, we adapted the Text2Mesh [7] frame-
work to take advantage of our texture model. Specifically, we optimize the latent
code passed to our pretrained generator using an evolutionary algorithm such
that the CLIP [9] scores between query and the renders are maximized. In Fig. 9,
we show a comparison to the original Text2Mesh approach, where we only opti-
mize for the colors on the surface of the mesh. Note that we disable the geometry
optimization for this experiment. While Text2Mesh gives good textures when the
queries specify a small scale texture description like “brick” or “cactus”, it fails

6 Y. Siddiqui et al.

Input SPSG [10] UV Baseline EG3D [3] Texture Fields [34] LTG [51] Ours

Fig. 6. Qualitative results on ShapeNet chairs dataset trained with real images from
the Photoshape dataset

Input SPSG [10] UV Baseline EG3D [3] Texture Fields [34] LIG [51] Ours

P T s O L
G s s P s £
P 5 0 Gl P
P e < P G
B P i P P B

Fig. 7. Results on ShapeNet cars trained with real images from the CompCars dataset.

Texurify 7

=0 | S

Style 1 Style 2
& Interpolation v/

Fig. 8. The texture latent space learned by our method produces smoothly-varying
valid textures when traversing across the latent space for a fixed shape.

to synthesize textures in a semantically consistent way for broader queries like
“brown chair” or “blue sedan car”. For instance, in the case of the car mesh,
Text2Mesh synthesizes smaller images of cars on the surface of the car mesh. In
contrast, our method generates semantically consistent textures, also on a higher
abstraction level.

Tex2Mesh Ours
(Front & Back) (Front & Back)

Input Mesh

Fig. 9. Comparison with Text2Mesh [7] with queries “brown chair” (top) and “blue
sedan car” (bottom).

While we already see a wide applicability of our method, there are limitations
that we want to address in future work. As we learn from real world data, we also
capture lighting effects, e.g., shadows or specular highlights in our texture. These
‘baked-in’ effects might look reasonable from one view-point, but view-dependent
effects like specular highlights should not be synthesized in the texture since
they are implausible from other view-points (see Fig. 10). Therefore, additional
effort has to be invested to disentangle these effects from the actual diffuse
texture. In addition, we think that combining our texture estimation approach
that estimates per face colors, with local texture MLPs similar to IF-Nets or

Y. Siddiqui et al.

ConvOcc (which could predict a color for each point on a face) is an interesting
avenue for future research.

®:0%

Real Samples Generated Samples

Fig. 10. Since our method does not model illumination, the textures produced by our
method can end up replicating the lighting effects found in the training images.

References

1.

Chan, E.R., Lin, C.Z., Chan, M.A., Nagano, K., Pan, B., Mello, S.D., Gallo,
O., Guibas, L., Tremblay, J., Khamis, S., Karras, T., Wetzstein, G.: Efficient
Geometry-aware 3D Generative Adversarial Networks. ArXiv (2021) 3, 5

. Dai, A., Siddiqui, Y., Thies, J., Valentin, J., Niefiner, M.: Spsg: Self-supervised

photometric scene generation from rgb-d scans. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 1747-1756 (2021)
3,4

Gu, S., Bao, J., Chen, D., Wen, F.: Giga: Generated image quality assessment. In:
European Conference on Computer Vision. pp. 369-385. Springer (2020) 3
Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. Advances in neural information processing systems 30 (2017) 2

Huang, J., Zhang, H., Yi, L., Funkhouser, T., Nieiner, M., Guibas, L.J.: Tex-
turenet: Consistent local parametrizations for learning from high-resolution signals
on meshes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 4440-4449 (2019) 2, 4

Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2015) 1

Michel, O., Bar-On, R., Liu, R., Benaim, S., Hanocka, R.: Text2mesh: Text-driven
neural stylization for meshes. arXiv preprint arXiv:2112.03221 (2021) 5, 7
Oechsle, M., Mescheder, L., Niemeyer, M., Strauss, T., Geiger, A.: Texture
fields: Learning texture representations in function space. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 4531-4540 (2019)
3

Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from
natural language supervision. In: International Conference on Machine Learning.
pp. 8748-8763. PMLR (2021) 5

Texurify 9

10. Yu, R., Dong, Y., Peers, P., Tong, X.: Learning texture generators for 3d shape
collections from internet photo sets (2021) 3, 4

	Supplementary Material forTexturify: Generating Textures on 3D Shape Surfaces

