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1 Comparison with state-of-the-art

In this section, we explain in more details the state-of-the-art methods. Extensive
comparison has been made in [9,7] to evaluate the descriptors for human motion
retrieval on CVSSP3D dataset. The polygonal curves of those descriptors are
filtered with a temporal filtering approach (a mean filter is applied along a
temporal window of size K). Finally, the dynamic time warping distance is used
for comparing the resulting curves. We compare our motion retrieval approach
to the best features presented in those papers, and to several other learned
descriptors:

1. The 3D harmonics descriptor [6][9] is a descriptor based on point cloud
repartition in space. A 3D shape is first normalized with two variations of
PCA. Then, a spherical histogram with different rays is built. The final
descriptor is decomposed along spherical harmonics of the obtained with
a specific re-weighting for better results. Temporal filtering is proposed in
order to deal with the real dataset. We report the results from [9].

2. Breadths spectrum and shape invariant [7] are presented as 2 fully invariant
descriptors derived from convex shape analysis. The authors propose to use
the breadths of the projection of a shape along each axis spanned by a normal
u ∈ S2 and to keep the rotation invariant spherical spectrum as a descriptor
for human pose. They combine the proposed descriptor with weighted areas
of the projection on each plan spanned by u to build a shape invariant. Noise
robust version of this descriptor, along with specific temporal filtering named
Q-breadths and Q-shape invariant are proposed for the real dataset.

3. Areas, Breadths are the full spherical signals of breadths and weighted ar-
eas is proposed to deal with dataset that shows no rotations in [7]. We
apply those descriptors, of size 64, along with their concatenation, Areas &
Breadths, on Dyna dataset.

4. Aumentado-Armstrong et al. [1] propose a variational autoencoder called Ge-
ometrically Disentangled VAE (GDVAE). They use PointNet architecture as
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point cloud encoders and decoders. In the paper, the authors propose to use
disentangled intrinsic and extrinsic latent vectors for human shape repre-
sentation. PointNet encoder is parameterization invariant, but training loss
uses the mesh Laplace Beltrami operator which needs a constant parame-
terization along the training set. Constraints are applied in training to make
the network rotation invariant. We report the result of their extrinsic la-
tent vectors (belonging to R12) from [7]. The network was pretrained on the
SURREAL dataset [8]. For the CVSSP3D datasets, we report the results
from [7].

5. Zhou et al. [10] propose a mesh autoencoder based on the Neural3DMM [3]
mesh neural network architecture. The network is only applied on human
shapes, with the objective to disentangle shape and pose in latent space.
The network architecture requires that all input meshes have the same pa-
rameterization. We can thus apply it only on the artificial dataset. We report
the cross validated results from [7] using the pose latent vectors (belonging
to R112) in the human sequence retrieval pipeline. Since the input of the
network are the coordinates of the vertices, the approach is not rotation
invariant. For the artificial dataset, we report the results from [7].

6. Cosmo et al. [4] propose a similar approach as GDVAE, called Latent Inter-
polation with Metric Priors (LIMP). They use the same type of autoencoder
as GDVAE but change the disentanglement constraints with metric prior
constraints: a change in extrinsic latent space should only induce change on
extrinsic distances of the meshes, while a change in intrinsic latent space
should only induce change on intrinsic distances of the meshes. They use
Euclidean and geodesic pairwise matrices in their losses to model this con-
straint, which needs a constant parameterization in the training set. We use
the network pretrained on the FAUST dataset [2]. They do not make any
specific training for Euclidean invariance. In order to do motion retrieval,
we applied the meshes as input of their available trained network and gath-
ered their extrinsic latent vectors (belonging to R64), and used them in the
human sequence retrieval pipeline.

7. Skinned Multi-Person Linear model (SMPL) pose representation. The SMPL
body model [5] is a parameterized human body model. A template is de-
formed (non-rigidly) according to a deformation parameterized by a shape
vector. A skeleton is associated to this template and a pose vector, com-
posed of relative rotation of each skeletal joint compared to its parent joint.
We convert each joint rotation to quaternion representation as in [10,1] and
measure the distance between unit quaternions by d(q, q′) = 1 − |q.q′|. The
SMPL body pose vector contains the pose information of 20 joints, and the
rotation of the central joint accounts for the global rotation of the shape, re-
sulting in a (R4)20 = R80 representation. Due to the construction of the pose
vector, this descriptor is rotation invariant. The SMPL parameters were aug-
mented with dynamic soft tissue deformation relative to each motion (called
DMPL) and use to transform the original Dyna dataset to the DFAUST
dataset, with better correspondance with the scan. They use for this goal
much more information such as texture information from body videos, and
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the shape vector is retrieved using gender information. We prefer comparing
on Dyna dataset rather than DFAUST dataset, allowing us to compare faith-
fully to the SMPL body pose descriptor. In order to build the pose vectors, a
costly fitting method is used along each sequence (accounting in minutes for
a single shape). The pose vectors for 129 motions of Dyna where the fitting
was successful, we added the SMPL Pose vector retrieved using available
code https://github.com/vchoutas/smplx/ for the remaining 5 motions.

2 Comparison of SPD metrics for Gram-Hankel matrices

This section is dedicated to the comparison between Frobenius and Log Eu-
clidean Riemannian Metric (LERM). The Gram-Hankel matrices are positive
semidefinite matrices. Several metrics have been propose to compare positive
semidefinite matrices. Table 1 shows the results of the comparison between Log
Euclidean Riemannian Metric (LERM) and the Frobenius distance.

dLERM (G1, G2) = || log(G1)− log(G2)||F ,

where log(G) = PT log(λ)P , where G = PTλP is the eigen decomposition of
the symmetric matrix G. We observe that the performance is lower than using

Representation Gram-Hankel distance
Artificial dataset Real dataset Dyna dataset
NN FT ST NN FT ST NN FT ST

Current
Frobenius 100 100 100 92.5 66.0 78.5 59.0 34.1 50.4
LERM 100 100 100 78.8 55.0 76.6 55.2 35.9 51.4

Absolute varifolds
Frobenius 100 100 100 95.0 66.6 80.7 60.4 40.0 55.9
LERM 100 100 100 80.0 54.6 73.4 57.5 36.0 50.8

Oriented varifolds
Frobenius 100 100 100 93.8 65.4 78.2 60.4 40.8 55.9
LERM 100 100 100 86.3 50.0 66.4 57.5 37.0 51.3

Table 1: Motion retrieval results for our approach with Log Euclidean Rieman-
nian Metric (LERM). The results are displayed for CVSSP3D artificial and real
datasets, and Dyna datasets

the Frobenius metric. This results confirms our choice of using Frobenius than
LREM metric.

3 Extended discussion on the parameters r and σ

Effect of the sigma parameter. The performance relative to the σ parameter
is displayed on the right of Figure 8 in the main paper for oriented varifolds on
Dyna dataset. We observe first that the choice of σ has a significant impact on
performance for NN and in the same time that the optimal σ for the NN is not
the same as one for FT and ST, for a loss of around 2% in those metrics, which

https://github.com/vchoutas/smplx/
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is less significant than the NN gain.
Effect of the choice of r. The performance relative to the r parameter is dis-
played on the left of Figure 8 for oriented varifolds on Dyna dataset. We observe
first that the choice of r has a significant impact on performance and in the same
time that the optimal r for the NN is not the same as one for FT and ST, for a
loss of around 5% in those metrics.
Effect of normalizations. We present in Table 2 of the main paper the per-
formances of oriented varifolds with the 2 normalization techniques presented
here. The centroid normalization is essential to the good performance of our
approach. In the mean time, the inner product normalization always implies sig-
nificant boost for NN metric, but can induce a (non-significant) loss in ST and
FT metrics.

4 Qualitative results: Queries on Dyna

Figure 1 shows the results for SMPL, Zhou et al and Areas & Breadths. Al-
though it is a the first tier is better for our approach in two manners: First
we observe that there is no confusion between a motion and the motion of the
same individual in our approach. Secondly, some drawbacks of the other meth-
ods appear: Areas & Breadths are symmetric descriptors and does not make the
difference between a punching arm (from down to up) and the two arms that
goes up and down when running, and we see a lot of punching motions retrieved
(4 out of 6 wrong retrievals). Second, the autoencoder of Zhou et al.is not fully
disentangled from the identity of the body and a lot of motions from the same
identity are retrieved (4 out of 6 wrong retrievals). SMPL gives the best result,
as expected from Table 1 of the paper. However, we observe also some sensitivity
to the identity of the performer (2 out of 3 wrong retrievals).

5 Qualitative results on CVSSP3D real dataset.

In the CVSSP3D real dataset, clothes worn by the subjects during the acquisition
process induce topological and mesh noises (see Figure 1 and Figure 5(b) of the
paper). The results on this dataset shows our method robustness to the noise
and clothes present in clothed human dataset. The quantitative results in Table
1 (paper) show that our approach is robust to the noise and outperforms state-
of-art methods on CVSSP3D real dataset in terms of NN. The confusion matrix
of our approach (absolute varifolds) on CVSSP3D real dataset , in Figure 2
shows that our approach performs well on all human motions of the dataset. We
display also a query with absolute varifolds, in Figure 3 (same query as the one
displayed in [7]). Our approach is able to provide 6 out of the 7 walk motion,
showing a slighlty better results compared to [7] (5 out of 7).
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(Query) 50020, run-
ning on spot

(AB – 1) 50022, run-
ning on spot

(AB – 2) 50025, shake
shoulders

(AB – 3) 50009, run-
ning on spot

(AB – 4) 50020,
punching

(AB – 5) 50027, run-
ning on spot

(AB – 6) 50007,
punching

(AB – 7) 50021,
punching

(AB – 8) 50027,
punching

(AB – 9) 50025,
punching

(a) Query using Areas & Breadths

(Query) 50020, run-
ning on spot

(Zhou – 1) 50022, run-
ning on spot

(Zhou – 2) 50004, run-
ning on spot

(Zhou – 3) 50021, run-
ning on spot

(Zhou – 4) 50020,
Shake hips

(Zhou – 5) 50020,
chicken wings

(Zhou – 6) 50020,
light hopping stiff

(Zhou – 7) 50022,
punching

(Zhou – 8) 50020,
punching

(Zhou – 9) 50021,
shake hips

(b) Query using Zhou et al. [10] Autoencoder

(Query) 50020, run-
ning on spot

(SMPL – 1) 50022,
running on spot

(SMPL – 2) 50026,
running on spot

(SMPL – 3) 50027,
running on spot

(SMPL – 4) 50009,
running on spot

(SMPL – 5) 50021,
running on spot

(SMPL – 6) 50004,
running on spot

(SMPL – 7) 50020,
shake hips

(SMPL – 8) 50026,
punching

(SMPL – 9) 50020,
punching

(c) Query using SMPL

(Query) 50020, run-
ning on spot

(Ours – 1) 50026, run-
ning on spot

(Ours – 2) 50009, run-
ning on spot

(Ours – 3) 50004, run-
ning on spot

(Ours – 3) 50007, run-
ning on spot

(Ours – 4) 50002, run-
ning on spot

(Ours – 5) 50025, run-
ning on spot

(Ours – 6) 50027, run-
ning on spot

(Ours – 8) 50026, one
leg jump

(Ours – 9) 50022, run-
ning on spot

(d) Query using oriented varifolds.

Fig. 1: First tier of the query of the paper for Areas & Breadths [7], Zhou et
al. [10], SMPL [2] and oriented varifolds on the Dyna dataset. The query is in
yellow and the results are sorted by closeness to the query using a given approach.
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Fig. 2: NN Confusion matrix of absolute varifolds on CVSSP3D real dataset.

(Query) Nikos, walk (QSI – 1) Jean, walk (QSI – 2) Jon, walk (QSI – 3) Hansung, walk

(QSI – 3) Chris, walk (QSI – 4) Haidi, walk
(QSI – 5) Hansung, walk
run and jump (Ours – 6) Nikos, run

(a) Query using Q-shape invariant (QSI)

(Query) Nikos, walk (Ours – 1) Natali, walk (Ours – 2) Jon, walk (Ours – 3) Joe, walk

(Ours – 4) Haidi, walk (Ours – 5) Chris, walk
(Ours – 6) Chris, jump in
place (SMPL – 7) Haidi, walk

(b) Query using absolute varifolds

Fig. 3: First tier of the query of the paper for Q-shape invariant [7] and Absolute
Varifolds. The query is in yellow and the results are sorted by closeness to the
query using a given approach. The first query is directly taken from [7]. The
query is in yellow and the results are sorted by closeness to the query using a
given approach.
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