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Supplementary Materials

In this Supplementary Materials, we firstly give more additional details about
our CF-NeRF implementation (Sec. . Secondly we analyze the model size as
well as time performance for all methods (Sec. . Then we describe a set of ab-
lation studies to give more insights about the performance of our model (Sec. .
Finally, we provide a set of additional qualitative results (Sec. .

1 Additional Implementation Details

Training details We use the same MLP-based architecture used in original
NeRF [6] as a backbone network for our CF-NeRF and the rest baselines. In
particular, we use 512 hidden units for all layers. During training and infer-
ence in CF-NeRF, we sample 32 radiance-density pairs for mean and variance
estimation for each ray. We optimize all the models for 100,000-200,000 steps
with a batch size of 512 and uniformly sampled 128 points across each ray us-
ing Adam optimizer with default hyper-parameters. For CF-NeRF, each sample
from the latent prior distribution is shared for different spatial-location and
viewing-direction inputs in each batch during training. To avoid overfitting with
the sparse number of training views used in our experiments, we employ an ad-
ditional depth loss based on [2] during optimization. This loss is weighted with
a value of le — 2 for our method and the rest baselines. Additionally, we set a
value of 0.01 as the weight for the Entropy term.

Conditional Normalizing Flows As for invertible transformation functions in
our Conditional Normalizing Flow(CNF), we use the Sylvester Flows [1] defined
as:

Zr = Zk—1 + Ah(BZk,1 —+ b) R (1)

where A, B and b are flow parameters of each transformation function. Addi-
tionally, A is an hyperbolic tangent activate function. These flow parameters are
conditional functions of the 5D location-direction pairs, while the samples from
the latent distributions are transformed to radiance and density by sequentially
using these transformation functions fi.x. In our CF-NeRF, we use four flows
for the radiance and density CNF's with the dimensions of the conditional feature
into each flow set to 64.

Metrics As a metric used to assess the quality of the depth prediction, we use
the d-threshold [3]. This metric is defined as follows:
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Table 1. Model size.

Add layers? D.E. (N=5) Drop. (N=5) NeRF-W S-NeRF CF-NeRF

No 11.5M 2.31M 2.31M  2.31M  2.38M
Yes 14.1M 2.85M 2.85M  2.83M -
28 25
2o NeRF-W. brop
% ( i ® NerF >
K=4 K=16) urs(K=32) 5
un @ =8).( o < DE e oA
1.0
Z 2 Drop: 3
< o5
20 (K=4)
NeRF-W. 0.0 pra
18 S-NeRF. _
® > 03 @K=16) gours(k=32)
16 -1.0
20 40 60 80 100 120 140 20 40 60 80 100 120 140

Inference time(s) Inference time(s)

Fig. 1. Time performance vs. Accuracy.

where we set the threshold 7 = 1.25 as done in previous works [3]. Note that we
only report d3 due to space limitations in the main paper.

2 Model size & time performance.

The table below shows the model size of our CF-NeRF and the rest baselines.
As stated in L462, for the sake of fairness, we add additional layers for the
latter so that they have a similar computational complexity than our CF-NeRF.
Concretely, all the results in the paper are obtained based on the version with
additional layers. From the table we can observe that adding the CNF only
increases model parameters by a negligible number (~70K) compared to the
baselines without extra layers. In contrast, adding additional layers dramatically
increases the model size (~540K each).

Regarding inference time, the figure below shows the latency and perfor-
mance (PSNR and NLL) of our CF-NeRF and all the compared baselines. The
reported results are obtained for a 640x360 image on a 2080Ti GPU. It can be
observed that our CF-NeRF performs the best both on image quality (PSNR)
and uncertainty estimation (NLL) with a reasonable inference time compared
to all the baselines. Moreover, properly reducing the number of samples during
inference (K=8~16) in CF-NeRF dramatically reduces the inference time with a
negligible impact in performance. Last but not least, our CF-NeRF framework is
enough general to be readily integrated in future work (L74) with other efficient
NeRF variants like Voxel-based [7] .
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Table 2. Results of our ablation studies: Quality and uncertainty quantification metrics
on rendered images and depth-maps over LF dataset. Best results are shown in bold.
See text for more details.

Quality Metrics Uncertainty Metrics
Methods PSNR? SSIM?T LPIPS| AUSE RMSE| AUSE MAE| NLLJ
CF-NeRF w/o Entropy 23.40 0.81 0.258 0.068 0.048 -0.448
RGB images CF-NeRF w/ Single Flow 23.82 0.83  0.228 0.081 0.039 -0.578
CF-NeRF 24.78 0.86 0.168 0.051 0.026 -0.710
RMSE| MAE| 431 AUSE RMSE| AUSE MAE| NLL|]
CF-NeRF w/o Entropy 0.121 0.078 0.76 0.224 0.143 7.88
Depth CF-NeRF w/ Single Flow 0.170 0.111  0.64 0.229 0.138 8.16
CF-NeRF 0.118 0.074 0.81 0.110 0.071 5.09

3 Ablations

In order to give insights into some design decisions of our proposed CF-NeRF, we
provide results for two ablation experiments. Concretely, we conduct experiments
over the LF dataset. Results are shown in Table 2] In the following, we describe
each of the experiments in more detail.

Entropy term. We remove the entropy term and train our CF-NeRF only
using the NLL as the training loss. On both generated RGB images and depth-
maps, we achieve better performance by using the Entropy term as well across
all metrics, including the prediction error and its associated uncertainty. This
is consistent with what we have discussed in the main paper that, maximizing
the Entropy term intuitively prevents the optimized distribution to degenerate
into a deterministic function where all the probability is assigned into a single
radiance field F, thus losing the ability to quantify correct uncertainty.

Single Flow. Our CF-NeRF uses two conditional normalizing flows(CNF) for
modelling the distribution of radiance and density. However, a more efficient
strategy could be to jointly model their distributions using a single flow in order
to take into account the possible dependence between them. As we can see in
Table [2] this variant obtains worse performance compared to our CF-NeRF with
two CNF's in terms of prediction quality and uncertainty estimation. This drop
in performance is especially high in the case of depth-map estimation. This can
be explained because using a single CNF for radiance and density distribution
contradicts the fact that the volume density must be independent of the emitted
radiance to obtain optimal results, as was previously discussed in [6/8].

4 More Results

Interpolation videos An intuitive advantage of the explicit distribution mod-
elling over the radiance fields in our CF-NeRF is that, we can conveniently an-
alyze the learned radiance fields by interpolating in the latent space [B/4]. The
shared latent variable allows to model the joint distribution of all the radiance-
density pairs in the scene in contrast to S-NeRF and hence could avoid the noisy
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Fig. 2. Sparsification curves obtained by different methods of estimating uncertainty
associated with rendered RGB images and estimated depth.

results. More formally, we define the interpolation value as,
Jr(z1,22,\) = Azq + (1 — \)za, (3)

where z; and zs are two random samples from the latent distribution with
A € [0,1]. Then the density and radiance can be obtained through our proposed
CNF, following our inference process to render novel views and depth. To see the
dynamic interpolation results we provide a video attached to this supplementary
material. By looking at different frames in the dynamic interpolated results, S-
NeRF tends to generate noisy image and depth predictions with random and
incoherent changes between adjacent frames obtained using two adjacent in-
terpolation values. In contrast, our CF-NeRF can generate more coherent and
smoothly changing frames, both on rendered RGB images and estimated depth-
maps. This clearly demonstrates the advantages of our proposed Latent Variable
Modelling for CF-NeRF in order to efficiently model the joint distribution over
all the possible radiance and density pairs in the scene.

Sparsification plots Fig. [2] shows the additional related sparsification curves
on the synthetic novel views and estimated depth averagely over the LF dataset.
Note that NeRF-W is not able to estimate uncertainty on depth and hence can-
not generate the sparsification curve on depth. When evaluated over all pixels, all
methods perform similarly. As we remove the pixels with high uncertainty from
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Fig. 3. More qualitative results obtained by our CF-NeRF over LLFF dataset.

1% to 100%, our method always obtains the lowest value and fits closest with
the oracle curve. This demonstrates that our estimated uncertainty correlates
significantly better with the prediction error than the others.

More qualitative results Fig. |3| shows more qualitative results obtained by
our CF-NeRF for the scenes in the simple LLFF dataset. Moreover, Fig. [] shows
additional qualitative results obtained by our CF-NeRF across other scenes in
the LF dataset: Africa, Statue, Torch. For each scene, we show not only the
predicted RGB views and the estimated depth-maps, but also their associated
uncertainty estimations.



Africa

J. Shen et al.

RGB Error RGB Uncertainty

RGB Pred.

Depth Uncertainty

Depth Error

Depth Pred.

I

/AN

RGB Pred. RGB Error

Depth Uncertainty

Statue

Depth Error

Depth GT Depth Pred.

RGB Error RGB Uncertainty

RGB Pred.

Depth Uncertainty

Depth Error

Depth GT

Fig. 4. More results obtained by our CF-NeRF over LF dataset.
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