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1 Experiments

1.1 Generality of Our Method in Small Models

We test our method for detectors with a small backbone network to ensure that
it works well in small models. At the same time, experiments are conducted
in the Pascal VOC dataset [1] to check whether the proposed method can be
generally applied to datasets other than the COCO [5]. We evaluate our method
on RetinaNet [4] and Faster-RCNN [6]. We designate ResNet34 [3] and ResNet18
as backbone models for the teacher and student models, respectively. As shown
in Table 1, the distilled models outperform the non-distilled student models
in every case. In Faster R-CNN, our model’s performance is 1.95 AP higher
than the baseline student’s one, and in RetinaNet, our model achieves 2.57 AP
improvement compared to the baseline student.

Table 1. Experimental results of the proposed method in Pascal VOC. We choose the
ResNet34 and ResNet18 as backbone models for the teacher and student model.

Model
Faster R-CNN RetinaNet

Teacher Student Ours Teacher Student Ours

AP 57.28 53.81 55.76 79.63 75.57 78.14

1.2 Results with Extremely Large Patch Sizes

We explore our method’s parameter sensitivity by evaluating the performance
under more intense parameter settings. In this section, we further evaluate the
patch size of 20 and 30 that are far larger than the default setting of 7. In Table 2,
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the model’s performance decreases as the patch size increases. This result is
because the large patch sizes are not suitable to catch local details, resulting in
a similar performance with the global attention method [8]. This experimental
result proves that the local patches extracting fine-grained knowledge are our
method’s key improvement to achieve high performance.

Table 2. Experimental results of the proposed method in extremely large patch size.

Patch size 7 9 11 20 30

AP 40.0 39.8 39.7 39.4 39.3

1.3 Effects of Hyper-parameters

We conduct several ablation studies to investigate the influence of the three
balancing parameters: α, β, and γ. Figure 1 reports the performance of the
student networks under different hyper-parameter settings. For all experiments
in Figure 1, we use RetinaNet [4] with ResNet50 [3] as student models and
RetinaNet with ResNext101 [7] as teacher models. We train and evaluate the
models on the COCO dataset. Even in the worst reported case, it shows only 0.2
AP drop compared to the default setting, showing GLAMD is hardly sensitive
to the choice of the hyper-parameters.

Fig. 1. Performance under different hyper-parameter settings.

1.4 Additional Comparison with SOTA

we conduct additional comparison experiments with DeFeat [2], a SOTA KD
method for object detection models. We evaluate the performance of DeFeat with
three different detectors on the COCO dataset. In Table 3, GLAMD generally
performs better than DeFeat.
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Table 3. Comparison with DeFeat KD method.

Model Faster-50 Retina-50 Cascade-50

DeFeat 40.6 39.4 42.8

GLAMD 40.8 40.0 43.0

1.5 Further Ablation Study on GLAM with each KD Method

To show more experimental results on the effectiveness of GLAM, we perform
further ablation studies for each KD method with and without GLAM including
the experiment of applying only GLAM. For all the experiments in the table,
we use the RetinaNet [4] detector and the COCO dataset. As shown in Table 4,
with GLAM, applying any single KD method performs better than the result of
applying all KD methods without GLAM. In addition, GLAM achieves 1.2 AP
gain when all the KD methods are applied. These results indicate that GLAM
boosts up distillation performance when collaborating with KD methods. In the
case of using GLAM without any KD method, our method results in a similar
performance to the baseline. This is because exploiting only GLAM does not
affect the detector loss.

Table 4. Results for GLAM influence experiments for each distillation method.

Mask Feat Cls Head Loc Head AP

w/o GLAM ✓ ✓ ✓ 38.7

w GLAM

✗ ✗ ✗ 36.8
✓ ✗ ✗ 39.5
✗ ✓ ✗ 39.0
✗ ✗ ✓ 38.9
✓ ✓ ✗ 39.7
✗ ✓ ✓ 39.0
✓ ✗ ✓ 39.6
✓ ✓ ✓ 40.0

2 Visualizations

2.1 Error Analysis

In this section, we analyze the different types of error by a baseline model and a
distilled model with our GLAMD. We use RetinaNet [4] with ResNet50 [3] back-
bone as a baseline model and the target dataset is COCO. As shown in Figure 2,
our method decreases all types of error compared to the baseline model. This
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Fig. 2. Error Analysis on a baseline model and a distilled model with our method.
LOC means localization error. Sim & Oth mean classification error on similar and
not similar classes, respectively. BG means false-positive error and FN means false-
negative error.

implies that our mask is effective to reduce both localization and classification
error.

2.2 Effect on Feature Distribution at Each Feature Level

We explore how the distribution of the feature map changes after the distillation
using our method. A variety of patch-wise L1 distance maps between the feature
maps of teacher and student models are visualized in Figure 3. We test a global
attention mask [8] and our mask on 14 image samples which are randomly se-
lected from COCO. We observe that GLAM generally decreases the feature gap
between the teacher and student in the whole region.

Furthermore, we analyze the mean of the distance maps in every FPN stage.
We calculate the mean of the L1 distance map of each sample and get the average
of all the sample’s L1 distance mean values to represent them as a scalar value.
The process is repeated for every layer in the model. As shown in Figure 4, our
method generally produces decreased L1 distance maps by reducing the mean
values in most cases, especially for deep layers. It means that our mask can lead
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Fig. 3. Extra visualizations of the L1 distances between the local features of teacher
and student for 14 samples randomly selected from COCO. The distance maps in the
left are produced by a model trained with a global attention mask method and the
distance maps in the right are produced by a model trained with GLAMD.

Fig. 4. Errorbar graph of the L1 distance between the feature maps of teacher and
student models in every stage.
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the student model to have more similar feature maps with the teacher’s feature
maps.

2.3 Visualization of GLAM in Each Stage

Fig. 5. Visualization of global attention masks and our GLAMs in every stage. The
target samples are from COCO.
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We visualize some examples of global attention masks [8] and our GLAMs
on each stage of the model in Figure 5. We observe that our mask is more
fine-grained in the early stage of the model, as the resolution of the feature
map is higher in the early stage while the patch size is fixed to all stage. This
characteristic of our mask is suitable to extract small details from the teacher’s
features. It is also verified that our mask generally extracts knowledge from more
various objects than the global attention mask in every stage of the model.
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