
Learning with Recoverable Forgetting
—Supplemental Material—

Jingwen Ye1, Yifang Fu1, Jie Song2, Xingyi Yang1, Songhua Liu1, Xin Jin3,
Mingli Song2, and Xinchao Wang1†

1 National University of Singapore
2 Zhejiang University 3 Eastern Institute of Advanced Study

{jingweny,xinchao}@nus.edu.sg, {e0724403,xyang,songhua.liu}@u.nus.edu
{sjie,brooksong}@zju.edu.cn, jinxin@eias.ac.cn

In this document, we provide the supplementary materials that cannot fit into
the main manuscript due to the page limit. Specifically, we give more details on
the proposed LIRF model, alongside more experimental results.

1 More Details of LIRF

1.1 Network Pruning

To apply ‘selective knowledge damage’ on deposit module Tr, we use the rank-
ing pruning method to get the initialized light-wight deposit module from the

original network T0 :Tr
Initialize←−−−−−− Prune[T (−n)

0]. The proposed network pruning
here can also be treated as a partial-knowledge-transfer technique to transfer
the sample-specific knowledge of the deposit Dr.

To be more specific, we use a ranking-based pruning method [3] that prunes
the filters with lowest ℓ1-norm values. Let ni be the input channel and no be the
output channel , then the filters at that layer can be denoted as ni 2D kernels
K ∈ Rk×k (e.g. 3 × 3). We measure the relative importance of a filter in each
layer by calculating the sum of its absolute weights:

Sj(K) =
ni∑
l

|Kl|. (1)

Then we sort the filters by Sj , which is used to prune the filters with the smallest
sum values and their corresponding feature maps. Also, the kernels in the next
convolutional layer corresponding to the pruned feature maps are removed.

Since this value also represents the average magnitude of its kernel weights,
it gives an expectation of the magnitude of the output feature map. Filters with
smaller kernel weights tend to produce feature maps with weak activations, as
compared to the other filters in that layer. Thus we retain the high-activated
filters, which are expected to contain the sample-specific knowledge.

† Corresponding author.

2 J. Ye et al.

1.2 Algorithm

The whole algorithm of LIRF is given in Alg. 1, which includes the knowledge
deposit and knowledge withdrawal processes.

Algorithm 1 Learning with Recoverable Forgetting

1: ——–Knowledge Deposit——–
Require: Dr: deposit set; T0: original network trained on the full dataset; n: the block

to divide the networks.
Ensure: T : the target network; Tr: the deposit module.
2: Divide the original network into two modules: T0 = T (−n)

0 ◦ T (n−)
0 ;

3: Separate and initialize the target network as T = T (−n) ◦ T (n−), where T (−n) ←
T (−n)
0 and T (n−) ← T (n−)

0 ;

4: Initialize the deposit module with pruning: T (−n)
r ← Prune[T (−n)

0];
5: repeat
6: Input x ⊂ Dr to T0, T and Tr;
7: Generate random labels yr for the input x;
8: Calculate the knowledge removal loss Lkr;
9: Calculate the knowledge preservation loss Lkp;
10: Calculate the partial knowledge transfer loss Lpt;
11: Calculate the recover loss Lre;
12: Update the parameters of T (−n) and Tr by the total loss Lall;
13: until Convergence
14: Return the target network T and store the deposit module Tr.
1: ——–Knowledge Withdrawal——–
Require: T : target network; Tr: deposit module;
Ensure: ‹T : the recover network.
2: For input x, construct the recover network by: ‹T (x) = g

(
T (x)

)
+g

(
Tr ◦T (n−)(x)

)
;

3: Return the recover network ‹T .
1.3 LIRF with Multiple Deposit Modules

In the main paper, we discuss the case on depositing and withdrawing one deposit
set at one time. In fact, it can be readily extended to depositing multiple deposit
sets {D1

r ,D2
r , ...,Dm

r } to multiple deposit modules {T 1
r , T 2

r , ..., T m
r }. The process

could be formulated as:

T0
Deposit−−−−−−−−−−→

{D1
r ,D2

r ,...,Dm
r }
{T , {T 1

r , T 2
r , ..., T m

r }}
Withdraw−−−−−−→ ‹T . (2)

Thus, there are two ways to deposit the sample-related knowledge to multiple
modules, which are ‘depositing once’ and ‘depositing in sequence’.

Depositing once. Depositing the multi-source knowledge once means that we
transfer the sample-specific knowledge to each deposit module {T 1

r , T 2
r , ..., T m

r }
with training the LIRF framework once.

Abbreviated paper title 3

. .
.

𝑥

Dep
osi

t M
od

ule
s

Target Net
𝒯('&)

𝒯(&')

𝒯+!

𝒯+"

. .
.

. .
.

Outp
ut

Log
its

𝑔

𝑔̅!

𝑔̅"

Input

Output

+

Recover Net

+ Concat

Knowledge Withdrawal

Fig. 1. The form of recover net in the knowledge withdrawal process. The deposit
modules and the target net are together to build the recover net.

Recall that the total loss is Lall = Lkr + λkpLkp + λreLre + λptLpt, then the
loss function can be rewritten with multi-deposit sets as:

Lkr = Lce

(
T (x), yr

)
− λatLat

(
T (−n)(x), T (−n)

0 (x)
)
,

Lkp = Lkd

(
g(

zT (x)

T
), g(

zT0
(x)

T
)
)
,

Lre =
∑
i

Lce

(‹T (xi), yi
)
,

Lpt =
∑
i

Lkd

(
gi(

zT i
r ◦T (n−)(xi)

T
), gi(

zT0
(xi)

T
)
)
,

w.r.t x ⊂
⋃
i

Di
r and xi ⊂ Di

r,

(3)

where gi is the filter to select Di
r-related logits and g is the filter to select the

logits related to the preservation set
⋂

iDi
r.

Depositing in sequence. Depositing the knowledge in sequence means that
the we deposit one sample-specific knowledge that related to Di

r(1 ≤ i ≤ m) at
one time. For example, when we transfer the knowledge from T0 to T 1

r with loss
Lall dealing with one deposit set D1

r , at the next step to deposit D2
r , the former

target net is treated as the new original network:

T0
Deposit−−−−−→

D1
r

{T 1, T 1
r }; T 1 Deposit−−−−−→

D2
r

{T 2, T 2
r }; ...; T m−1 Deposit−−−−−→

Dm
r

{T , T m
r }, (4)

which means that the LIRF is trained m times to deposit all sets. This proves
that the proposed method can deal with the incoming requires for depositing.

4 J. Ye et al.

Fig. 2. The accuracy curves (‘Pre Acc.’, ‘Dep Acc.’, ‘H Mean’ and ‘Avg Acc.’) and
loss curves (‘Total Loss’ and ‘ATT Loss’) while training in LIRF. (Note a total of 20
epochs are used for training.)

Knowledge withdrawal from multiple deposit modules. Given the de-
posit module set {T 1

r , T 2
r , ..., T m

r } and the target network T , the recover network
is reorganized as: ‹T (x) = g

(
T (x)

)
+

∑
i

gi
(
T i
r ◦ T (n−)(x)

)
, (5)

where g is the filter to select the logits related to the preservation set. The
process of knowledge withdrawal to the recover net is depicted in Fig. 1.

2 More Experiments

The loss curve and accuracy curve while training. In Fig. 2, we depict
the curves of ‘Dep Acc.’, ‘Pre Acc.’ ‘H Mean’ on the target net and ‘Dep Acc.’,
‘Pre Acc.’ and ‘Avg Acc.’ on the recover net, as well as the total loss (Lall) and
att loss (‘L′

at) while training the whole LIRF framework. As can be seen in the
figure, the losses convergence first in the first few epochs, where the we maximise
the ‘ATT loss’ (Lat) in the training process. Thus, the proposed FIRF is time-
efficient, 20 epochs of training is enough for finetuning the whole framework.
Also, the accuracy on the preservation set drops slightly due to bias caused
by training only with the deposit set Dr. However, this drop is not sufficiently
significant, which doesn’t affect the average accuracy (‘Avg Acc.’) on the whole
dataset.

2.1 More Ablation Study on LIRF

The influence of the deposit set scale. In the normal setting of the pro-
posed framework, 20% of the data is selected to form the deposit set Dr. Here,
to explore the influence of the scale of the deposit set, we deposit different per-
centages of the deposit set and show the performances on the target network
and the recover network, as shown in Fig. 1. We observe that:

Abbreviated paper title 5

Table 1. Experimental results of the ablation study on the scale of the deposit set.
The experiments are conducted on CIFAR-10 dataset.

Scale (|Dr|/|D|)
#Target Net #Recover Net

Pre Acc. ↑ Dep Acc. ↓ H Mean↑ Pre Acc. ↑ Dep Acc. ↑ Avg Acc. ↑
Deposit-10% 93.18 27.93 77.27 92.73 99.81 93.44
Deposit-20% 93.97 16.64 86.30 93.61 98.13 94.51
Deposit-30% 93.42 14.15 86.45 94.55 97.67 95.49
Deposit-40% 95.91 21.29 86.21 95.47 95.63 95.53
Deposit-50% 97.13 19.20 84.22 95.86 95.27 95.57
Deposit-60% 98.12 11.80 88.74 96.61 94.15 95.13
Deposit-70% 98.31 9.17 90.64 97.08 94.02 94.94
Deposit-80% 96.41 13.67 87.40 96.91 94.16 94.71
Deposit-90% 64.52 2.75 75.56 95.76 94.08 94.25

– No matter how large the deposit set is, the proposed LIRF works in both
knowledge deposit and knowledge withdrawal (high ‘H Mean’ and ‘Avg
Acc.’);

– With the increase of the deposit scale (|Dr|/|D|), ‘Pre Acc.’ on the target net
increases firstly because of more training data to boot the partial knowledge
transfer, and drops at last due to the bias caused by the deposit sets.

– Depositing nearly half of the full data has the best performance on both the
knowledge deposit and withdrawal processes (the highest high ‘H Mean’ and
‘Avg Acc.’)

– When deposit 90% data, ‘Pre Acc.’ on the target net turns to be undesirable.
This is however understandable since, when there is a request to deposit
almost all of the data, the model performance downgrades and it is better
to retrain a new model on the preserved dataset.

2.2 LIRF with multiple deposit modules.

As discussed in Sec. 1.3, we explore two means of depositing the knowledge with
multiple deposit modules, which are depositing once and depositing in sequence.

Different deposit orders. Here, we compare the performance of these two
multi-deposit methods. Let D1

r and D2
r be two deposit sets (each contains 20%

of the full data D), then the comparative results are displayed in Table 2. The
deposit orders for comparison are:

[Once] : T0
Deposit−−−−−→
{D1

r ,D2
r}
{T , {T 1

r , T 2
r }},

[Sequence] : T0
Deposit(1)−−−−−−−→

D1
r

{T1, T 1
r }

Deposit(2)−−−−−−−→
D2

r

{T , T 2
r },

[Sequence-inv] : T0
Deposit(1)−−−−−−−→

D2
r

{T1, T 2
r }

Deposit(2)−−−−−−−→
D1

r

{T , T 1
r }.

(6)

6 J. Ye et al.

Table 2. Experimental results on the LIRF with multiple deposit modules. For the
process of knowledge deposit we compute ‘H Mean’ and for knowledge withdrawal, we
compute ‘Avg Acc.’.

Order Process Pre Acc. ↑ D1
r Acc. D2

r Acc. H Mean/Avg Acc.↑
Original - 94.80 96.43 90.58 94.28

Once
Deposit 95.41 15.37 17.64 85.22

Withdraw 94.94 96.20 97.06 95.62

Sequence
Deposit(1) 93.97 16.64 - 86.30
Deposit(2) 93.19 - 14.48 83.78
Withdraw 93.01 97.23 96.56 94.36

Sequence-inv
Deposit(1) 93.85 - 19.17 81.11
Deposit(2) 93.92 14.37 - 87.62
Withdraw 93.26 97.96 95.83 94.71

From the figure, several conclusions could be drawn that:

– All the three orders (‘Once’, ‘Sequence’ and ‘Sequence-inv’) are capable of
depositing and withdrawing the sample-specific knowledge of each deposit
set;

– In the proposed multi-deposit LIFR framework, the scheme ‘depositing once’
shows better performance than the scheme ‘depositing in sequence’. It is
mainly because that more data is included to finetune LIRF, which reduces
that data bias;

– When depositing in sequence, the order of the deposit set doesn’t affect the
final performance.

Different withdrawal orders. Also, for comparing the recover net with differ-
ent orders to withdraw from the deposit module set, we conduct the experiments
depicted in Tabel 4. The withdrawal orders for comparison are:

[Once] : {T , {T 1
r , T 2

r }}
Withdraw−−−−−−→
{D1

r ,D2
r}
‹T ,

[Sequence] : {T , T 1
r }

Withdraw(1)−−−−−−−−→ ‹T1; {‹T1, T 2
r }

Withdraw(2)−−−−−−−−→ ‹T ,
[Sequence-inv] : {T , T 2

r }
Withdraw(1)−−−−−−−−→ ‹T1; {‹T1, T 1

r }
Withdraw(2)−−−−−−−−→ ‹T . (7)

From the table, we observe that:

– All the deposit orders don’t affect the performance of the final recover net,
since the final formulation of the recover net wouldn’t be changed;

– The deposit orders don’t affect the performance of the intermediate recover
net (‹T1) a lot. So in the proposed LIRF, it is flexible to withdraw from a set
of deposit modules.

Abbreviated paper title 7

Table 3. Experimental results on the LIRF with multiple deposit modules. We compare
the performances of the recover net with different withdrawal orders.

Method Process Pre Acc.↑ D1
r Acc.↑ D2

r Acc.↑ Avg Acc.↑
Original - 94.80 96.43 90.58 94.28

Once Withdraw 94.94 96.20 97.06 95.62

Sequence
Withdraw(1) 95.22 96.89 - 95.64
Withdraw(2) 94.94 96.20 97.06 95.62

Sequence-inv
Withdraw(1) 95.29 - 97.46 95.83
Withdraw(2) 94.94 96.20 97.06 95.62

Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

O
rig
in
al
N
et

Ta
rg
et
N
et

Fig. 3. Images generated by inverting the original network (T0) and the target network
(T) trained on CIFAR-10 with DeepInversion. For each image, each group containing
2× 2 images represents one category. The deposit set is marked in blue.

2.3 Privacy Test via Data-free setting

To verify whether the proposed LIRF has removed the sample-specific knowledge
from the target network, we evaluate the target net T on the data-free knowledge
distillation method DeepInversion [8], where we treat the target net as teacher
and students only have access to the probabilities produced by teacher networks.

DeepInversion inverts a trained network (teacher) to synthesize class-conditional
input images starting from random noise, without using any additional informa-
tion about the training dataset. By DeepInversion, we transfer the knowledge
from the teacher network to the image domain, which could be thought as a kind
of visualization of the sample-specific knowledge. The synthetic images from the
original net (T0) and the target net (T) are compared in Fig. 3, where the first
three categories are in the deposit set. As can be seen from the figure, the im-
ages synthesized from the original net show the clear main object of the category,
which show that the sample-specific knowledge of all categories is well-preserved
in the original network. It is similar in the preservation categories of the target
net. While in target net, the images synthesized from the deposit categories are
hard to be recognized by human eyes, which shows that we have already removed
the sample-specific knowledge from the target net.

8 J. Ye et al.

Table 4. Comparative experimental results on incremental learning.

Method s = 5 s = 10 s = 20 s = 50

LwF [4] 29.5 40.4 47.6 52.9
iCaRL [5] 57.8 60.5 62.0 61.8
EEIL [1] 63.4 63.6 63.7 60.8
BiC [7] 60.1 60.4 68.9 70.2
LIRF(ours) 72.6 74.9 77.0 79.4

Table 5. Comparative experimental results on machine unlearning.

Method
#1-Class #2-Class

Pre Acc. ↑ Dep Acc. ↓ H Mean↑ Pre Acc. ↑ Dep Acc. ↓ H Mean↑
Original 84.05 87.49 0 84.18 84.72 0
Retrain 85.72 0 86.60 86.30 0 85.50
Min-Max [2] 20.48 5.11 32.64 29.59 7.59 42.77
GKT [2] 81.97 0 84.64 81.70 0 83.18
LIRF(Our) 84.19 12.30 79.43 84.07 15.82 75.73

2.4 Comparing with Incremental Learning

The proposed LIRF could be modified to do the class-incremental task. Here, we
compare the proposed framework with the other incremental learning methods.
The experiments are conducted on CIFAR-100 dataset. Please also note that the
setting of the proposed LIRF is different from the normal incremental learning
methods. In order to adapt LIRF with the incremental setting, we train the
framework in the following steps: (1) We train the original network T with
all the C categories; (2) For the incremental step that contains s classes, we
finetune LIRP with depositing in sequence, so that we have one target net and
(C/s−1) deposit modules; (3) For each incremental step, we withdraw from one
deposit module. The comparative results are conducted on CIFAR-100 dataset,
and are depicted in Table 4, where the methods for comparison are the standard
incremental learning methods.

Comparing with the methods in Table 4, the proposed LIRF outperforms
others by a large margin. It is because that the LIRF trains the original network
firstly and then does the knowledge deposit. Here, please note that we do not
want to claim that we propose the state-of-the-art method in incremental learn-
ing. The experiments are conducted here to prove that the good performance
of knowledge withdrawal from the deposit modules. And when the data in de-
posit set is available again, the proposed LIRF performs much better than the
methods where the network is trained with treating this data as the new-coming
data. Thus, it again shows the necessarily to deposit the knowledge, instead of
directly abandoning it.

Abbreviated paper title 9

2.5 Comparing with Machine Unlearning

In order to compare with the state-of-the-art machine unlearning methods, we
follow the setting of the previous unlearning method [2]. We demonstrate the
performance of the proposed methods for unlearning single and multiple classes
on CIFAR-10 dataset and compare the proposed LIRF with the methods that
work on the class-level unlearning. For fair comparison, we unlearn class 0 in
1-class and classes 1 and 2 in 2-classes unlearning and use ALLCNN [6] as
backbone. The comparative results are displayed in Table 5. The proposed LIRF
also performs good in the field of machine unlearning, which demonstrate the
generalization ability of LIRF. Also, it can be observed from the table that LIRF
does well in preserving the performance of the preservation set.

References

1. Castro, F.M., Maŕın-Jiménez, M.J., Mata, N.G., Schmid, C., Alahari, K.: End-to-
end incremental learning. In: European Conference on Computer Vision (2018)

2. Chundawat, V.S., Tarun, A.K., Mandal, M., Kankanhalli, M.S.: Zero-shot machine
unlearning. ArXiv abs/2201.05629 (2022)

3. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient
convnets (2016)

4. Li, Z., Hoiem, D.: Learning without forgetting. In: European Conference on Com-
puter Vision (2016)

5. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: icarl: Incremental classifier
and representation learning. IEEE Conference on Computer Vision and Pattern
Recognition pp. 5533–5542 (2017)

6. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.A.: Striving for sim-
plicity: The all convolutional net. CoRR abs/1412.6806 (2015)

7. Wu, Y., Chen, Y., Wang, L., Ye, Y., Liu, Z., Guo, Y., Fu, Y.R.: Large scale in-
cremental learning. Conference on Computer Vision and Pattern Recognition pp.
374–382 (2019)

8. Yin, H., Molchanov, P., Li, Z., Álvarez, J.M., Mallya, A., Hoiem, D., Jha, N.K.,
Kautz, J.: Dreaming to distill: Data-free knowledge transfer via deepinversion. Con-
ference on Computer Vision and Pattern Recognition pp. 8712–8721 (2020)

