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This is the supplement to our main paper. Here we present further results on
low-level vision tasks (Sec. A), show additional analysis experiments (Sec. B),
show preliminary results on HRNet [12], provide several example model outputs
(Sec. D), expand on the details of our main experiments (Sec. E), provide a
derivation for Eq. 4 (Sec. F), and discuss the theoretical properties of event
networks (Sec. G). For sections, figures, tables, and equations, we use numbers
(e.g., Fig. 1) to refer to the main paper and capital letters (e.g., Fig. A) to refer
to this supplement.

A Results on Low-Level Tasks

In this section, we describe our experiments for low-level vision tasks. We con-
sider HDRNet for image enhancement [5] and PWC-Net for optical flow [11].

Note that these models include some specialized operations (i.e., the bilateral
transform for HDRNet [5] and flow warping in PWC-Net [11]). These operations
represent a small portion of the overall computational cost of the models. For
simplicity, we exclude them when counting multiply-accumulate operations.

Image Enhancement. HDRNet [5] can be trained to reproduce several image
enhancement effects. We use the Local Laplacian [8] version of the model. HDR-
Net has two subnetworks: a deep, low-resolution feature network and a shallow,
high-resolution guidemap network. The guidemap network represents only about
10% of the overall operations, and converting it to an EvNet has a noticeable
effect on the visual quality of the output. Therefore, we only convert the feature
network to an EvNet. We report operation savings for both the overall model
(both subnetworks) and the feature network (the EvNet portion). We refer to
these operation counts as “HDRNet-a” and “HDRNet-f,” respectively. We use a
threshold of h = 0.1 and evaluate using the PSNR metric. We resize all images
to 540× 960 before applying the model.

We use the original authors’ pretrained weights. However, these weights were
trained on a non-public dataset. Therefore, instead of evaluating the model
against ground truth labels, we compute the agreement between the outputs
of the event model and conventional model. We evaluate on a subset of the
MPII video dataset [1] (see Sec. E for details on the dataset). See Table A and
Table B for results. We also show example model outputs Fig. E.

Optical Flow. We also consider the PWC-Net model [11] for optical flow com-
putation. Unlike the other models (OpenPose, YOLO, HDRNet) which take a
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Table A. Results on Low-Level Tasks. Results for image enhancement and op-
tical flow. The tables gives the overall computation savings, agreement between the
conventional and event models, and overhead percentages (number of extra operations
expended for each operation saved).

Model Savings Agreement Math Load/Store

HDRNet-a 5.78x 39.4 PSNR 2.57% 3.79%
HDRNet-f 23.9x 39.4 PSNR 2.57% 3.79%
PWC-Net 2.68x 0.335 EPE 0.44% 0.74%

Table B. Camera Motion for Low-Level Tasks. The savings factor for different
levels of camera motion, evaluated on our custom MPII dataset (see Sec. E).

Model None Minor Major

HDRNet-a 6.19× 6.02× 5.55×
HDRNet-f 34.9× 29.7× 20.0×
PWC-Net 5.41× 3.29× 2.11×

single frame as input, this model takes a pair of frames. We use a threshold of
h = 0.01 and evaluate using the EPE metric [2]. We resize all images to 288×512
before applying the model. We use the original authors’ weights trained on Sin-
tel [3]. Like with HDRNet, we evaluate the agreement between the event and
conventional outputs. Results are shown in Table A and Table B. We also eval-
uate on the ground-truth labels in the Sintel training dataset. On this data, the
conventional model achieves EPE 2.86 and the event model achieves EPE 3.33.

B Additional Analysis Experiments

Layer Trends. Fig. A shows the computational cost of the OpenPose model as
a function of the layer depth. We show results both on the JHMDB dataset and
on our custom-labelled MPII dataset (to allow analysis of the effect of camera
motion). Overall, we see a reduction in the relative cost as we go deeper in the
network. This highlights the importance of leveraging repetition in the deep lay-
ers of the network, not just near the input. We also observe that the early layers
transmit more frequently when there is large camera motion. This corresponds
to an increased number of changes in low-level features and pixel values.

Temporal Variation. Fig. B shows the per-frame computational cost of the
OpenPose EvNet over the course of a video. The video in question has a static
background and a moving foreground object (person). Recognizable events in the
video (e.g., walking, jumping) correspond to temporary increases in the number
of operations. In this way, we see EvNets living up to their promise of “only
computing when something interesting is happening.”

Varying Granularity. Table C shows the effect of increasing the granularity of
the policy. We evaluate the OpenPose model [4] on the JHMDB dataset [7]. We
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Fig.A. Operation Costs by Layer. Results for the OpenPose model on the JHMDB
and custom-labelled MPII datasets. The increasing savings with depth show the im-
portance of leveraging repetition at all levels of the network hierarchy. We have applied
a median filter of size 5 (along the layer axis) to the data in this plot.

Empty Enters Frame Jumps Pauses Walks Back Empty

Fig. B. Temporal Variation in Operation Cost. Identifiable events in the video
(e.g., jumping) correspond to temporary increases in the number of operations. “Shal-
low” corresponds to the first 31 layers, “middle” to the next 31, and “deep” to the final
30. We have applied a centered moving average of size 10 (along the time axis) to the
data in this plot.
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Table C. Varying Granularity. Results for the OpenPose model on the JHMDB
dataset. Using larger chunks, especially channel chunks, reduces the computational
gains somewhat. However, chunking may have practical benefits on some hardware.

Variant Threshold PCK Operations

Conventional – 0.7640 7.055× 1010

No chunking 0.05 0.7581 6.166× 109

2x2 chunks 0.05/
√
2 0.7575 8.574× 109

4x4 chunks 0.05/
√
4 0.7662 1.191× 1010

8x8 chunks 0.05/
√
8 0.7431 1.646× 1010

Channel chunks 0.02 0.7600 1.782× 1010

test both a spatial chunking policy and a policy that chunks along the channel
dimension (e.g., [6]). Because each neighborhood computes a mean of several
|d|, the thresholds must be reduced to keep the accuracy from dropping. The
threshold-setting strategy 0.05/

√
n is a heuristic that we found to give relatively

stable accuracy with varying n. The results show that increasing the chunk size
reduces the operation savings. However, chunking may, in practice, allow more
efficient execution on certain hardware.

Comparison Against Output Interpolation. One alternate strategy for ef-
ficient video inference is to run a model once every n frames and interpolate
its predictions for the remaining n− 1 frames. We apply this strategy to Open-
Pose on JHMDB and compare it to the EvNet approach. We use n = 16 and
linearly interpolate the joint positions between model predictions (the value 16
was chosen to give a computational cost close to the EvNet in Table 1). The
interpolated model expends 6.764 × 109 ops per frame on average and achieves
a PCK of 68.52% (a reduction of 7.88% from the conventional model). Com-
pare this to the EvNet in Table 1, which expends 6.780 × 109 ops on average
while achieving a PCK score of 76.37% (a reduction of 0.03% from the conven-
tional model). Compared to output interpolation, the EvNet gives much higher
accuracy at a similar computation cost. Note that we trim the inputs for the
interpolation model to have a length of kn+1 frames, where k is a positive inte-
ger. This ensures that the video can be divided into uniform blocks of n frames
(with one extra frame at the end). If we trim to the same length for the EvNet,
it achieves a PCK of 76.82% with average cost 7.265×109 ops. The conventional
model achieves PCK 76.67% at 7.055× 1010 ops on the trimmed video.

Temporal Smoothness. We have anecdotally observed improved temporal
smoothness in the outputs of EvNets. We hypothesize that this is one of the
reasons for the slightly increased accuracy for some models (e.g., Table 1) over
the conventional baselines. We quantitatively measure temporal smoothness for
OpenPose on JHMDB by measuring the mean L2 joint motion between frames.
The average joint motion for the conventional model is 10.3 pixels. For the
EvNet with threshold h = {0.01, 0.02, 0.04, 0.06, 0.08}, the average motion was
{9.77, 9.26, 7.98, 7.14, 5.81} pixels. This confirms that the EvNet outputs are
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Table D. HRNet Results. Results for the HRNet model on JHMDB.

Model Threshold PCK Operations

Conventional – 90.37% 1.019× 1010

EvNet 0.05 90.43% 1.112× 109

EvNet 0.1 90.46% 7.361× 108

EvNet 0.2 86.44% 4.187× 108

Skip-Conv 0.05 89.17% 1.035× 109

Skip-Conv 0.1 84.45% 6.473× 108

Skip-Conv 0.2 78.72% 3.307× 108

more temporally smooth than those of the conventional model, with smoothness
increasing with the policy threshold.

C HRNet Experiments

We test HRNet [12], a state-of-the-art model for various location-based tasks
(e.g., object detection) on the JHMDB pose recognition dataset [7]. We use the
HRNet-W32 version of the model.

Training Procedure. We initialize with pretrained MPII weights from [12]. We
fine-tune the model on JHMDB for 20 epochs using the Adam optimizer and a
learning rate of 1 × 10−5. We set aside 20% of the training data for validation
and save the model at the epoch with the lowest validation loss. JHMDB defines
three train/test splits – we train and evaluate a model on each training split
and average the results (accuracy and computation costs) over the three splits.
Where not otherwise specified, we adopt the training and data augmentation
parameters of [6]. All of our training code will be publicly released and included
with the supplementary material.

Evaluation. We evaluate three model variants: the conventional model, an
EvNet and Skip-Conv (without periodic resets). See Table D for results. We
report the PCK metric (as in our experiments on OpenPose). The accuracy and
savings we observe are in line with our other experiments.

D Example Outputs

Example Outputs. Fig. C, Fig. D, Fig. E, and Fig. F show several example
outputs for OpenPose, YOLO, HDRNet, and PWC-Net, respectively. The videos
shown are from our custom MPII dataset (and hence all have 41 frames). In
general, we see strong agreement between the conventional and event predictions.
In some cases (especially with the YOLO model; Fig. D), we observe greater
consistency in the EvNet predictions across frames. This is a consequence of an
event network’s preference for re-using previous activation values. This greater
temporal consistency does not appear to reduce the model’s ability to keep up
with rapid changes.
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E Experiment Details

Custom MPII Dataset. Here we describe the dataset that we use in our
camera motion experiments (Table 3 and Table B) and for evaluating HDRNet
and PWC-Net (Table A). We take a subset of the MPII video dataset [1] –
specifically, the first 246 videos that have exactly 41 frames (most, but not
all videos in MPII have 41 frames). We then label each video in this dataset
as having “no camera motion” (perfectly stationary camera), “minor camera
motion” (slight camera shake), or “major camera motion”. These splits contain
59, 46, and 141 videos, respectively.

Overhead Counting. We count overhead operations as follows. An update to
an accumulator requires one load (a), one addition (a+ g(∆in)), and one store
(a). An update to a gate requires two loads (b and d), three additions (d+f(a)−b
and |d| −h), and two stores (b and d). A transmission requires one load (d), one
subtraction (d−∆out), and one store (d).

Tables of Results. Table E shows the complete results for OpenPose on JH-
MDB. These values correspond to the points in Fig. 7 (a). Table E shows the
complete results for YOLO [9] on VID [10], corresponding to Fig. 7 (b). Table G
shows the overhead operation percentages for all thresholds tested for Fig. 7.

We also show results for larger input images (352 × 480 for OpenPose and
320×544 for YOLO). Results for pose recognition, object detection, and overhead
are given in Table H, Table I, and Table J, respectively.

F Derivation of Equation 4

The equation for a(T ) is a consequence of the update to a(t) defined in Eq. 3,
combined with the linearity of g (g of a sum is equal to the sum of the g). The
equation for b(T ) is a direct consequence of the update rule in Eq. 3.

The equation for d(T ) in Eq. 4 comes from combining Eq. 3 and the post-
transmission subtraction of ∆out. Let d

(0) = 0 as stated in Sec. 4.2. With Eq. 3,
and noting that b(t) = f(a(t)),

d(T ) =
∑T

t=1

(
f(a(t))− b(t−1)

)
= b(T ) − b(0). (A)

Adding in the post-transmission subtraction of ∆
(t)
out, we have

d(T ) = b(T ) − b(0) −
∑T

t=1 ∆
(t)
out. (B)

G Thoughts on Theoretical Guarantees

For certain special cases of transmission policies (e.g., a threshold policy with
h = 0), we can guarantee that the output of an EvNet will be equal to that of the
equivalent conventional network. As we make the policy more selective (e.g., by
increasing h), the efficiency of the EvNet improves, but its output increasingly



Event Neural Networks 7

deviates from that of the conventional network. While we currently describe this
behavior qualitatively, developing the rigorous theoretical tools necessary for a
quantitative description is an important next step.

We can describe a neural network as a composition of functions,

y = qm(. . . (q2(q1(x))) . . .). (C)

We can think of an event network as perturbing the output of each qi by some
ϵi. That is,

y′ = qm(. . . (q2(q1(x) + ϵ1) + ϵ2) . . .) + ϵm. (D)

If we assume a threshold policy with threshold h, then ∥ϵi∥∞ < h. Given these
facts and some knowledge of the properties of the qi (e.g., the distribution of
their weights), can we bound the norm of y − y′? This question has important
implications for applications that require accuracy guarantees and should be
studied in future work.
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Fig. C. OpenPose Result Samples. Conventional output is on the top and event
output is on the bottom. We show frames 0, 10, 20, 30, and 40 from each video. Videos
are from the MPII dataset.
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Fig.D. YOLO Result Samples. Conventional output is on the top and event output
is on the bottom. We show frames 0, 10, 20, 30, and 40 from each video. Videos are
from the MPII dataset.
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Fig. E. HDRNet Result Samples. The model input is on the top, conventional
output is in the middle, and event output is on the bottom. We show frames 0, 10, 20,
30, and 40 from each video. Videos are from the MPII dataset.
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Fig. F. PWC-Net Result Samples. The model input is on the top, conventional
output is in the middle, and event output is on the bottom. We show frames 0, 10, 20,
and 30 from each video. Videos in this dataset have 41 frames, and we predict flow for
each pair of frames. There, we cannot show output for frame 40. Videos are from the
MPII dataset.
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Table E. Video Pose Estimation. Detailed results for the OpenPose model on
JHMDB. The “Skip-Conv Reset” model re-flushes the network (i.e., sets all thresholds
to zero) every 8 frames. See Fig. 7.

Model Threshold PCK Operations

Conventional – 0.7640 7.055× 1010

EvNet 0.01 0.7656 1.071× 1010

EvNet 0.02 0.7696 8.825× 109

EvNet 0.04 0.7637 6.780× 109

EvNet 0.06 0.7448 5.640× 109

EvNet 0.08 0.7310 4.890× 109

Skip-Conv 0.01 0.7603 1.027× 1010

Skip-Conv 0.02 0.7277 7.873× 109

Skip-Conv 0.04 0.6644 5.837× 109

Skip-Conv Reset 0.01 0.7621 1.092× 1010

Skip-Conv Reset 0.02 0.7311 8.816× 109

Skip-Conv Reset 0.04 0.6635 7.054× 109
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Table F. Video Object Detection. Detailed results for the YOLO model on VID.
The “Skip-Conv Reset” model re-flushes the network (i.e., sets all thresholds to zero)
every 8 frames. See Fig. 7.

Model Threshold mAP50 Operations

Conventional – 0.5538 1.537× 1010

EvNet 0.01 0.5545 7.472× 109

EvNet 0.02 0.5563 6.074× 109

EvNet 0.04 0.5618 4.517× 109

EvNet 0.08 0.5619 3.061× 109

EvNet 0.12 0.5463 2.306× 109

EvNet 0.16 0.5024 1.812× 109

Skip-Conv 0.01 0.5413 7.340× 109

Skip-Conv 0.02 0.4581 5.705× 109

Skip-Conv 0.04 0.3098 3.819× 109

Skip-Conv Reset 0.01 0.5406 8.111× 109

Skip-Conv Reset 0.02 0.4544 6.692× 109

Skip-Conv Reset 0.04 0.2737 5.054× 109

Table G. Operation Overhead. The amount of overhead operations required for
computing EvNet updates. “Math” refers to arithmetic operations (additions and sub-
tractions) and “load/store” refers to memory access operations. Percentages are the
ratio of additional operations expended for each arithmetic operation saved. For ex-
ample, a memory overhead of 1% indicates that one extra load/store is expended for
each 100 arithmetic operations saved. See Table 2.

Model Threshold Load/Store Memory

OpenPose 0.01 0.16% 0.28%
OpenPose 0.02 0.14% 0.25%
OpenPose 0.04 0.12% 0.21%
OpenPose 0.06 0.10% 0.18%
OpenPose 0.08 0.09% 0.16%
YOLO 0.01 0.88% 1.57%
YOLO 0.02 0.74% 1.28%
YOLO 0.04 0.62% 1.04%
YOLO 0.08 0.52% 0.85%
YOLO 0.12 0.47% 0.74%
YOLO 0.16 0.43% 0.67%
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Table H. Video Pose Estimation for Larger Images. The corrolary of Table E,
but for larger input images (352× 480 instead of 320× 240).

Model Threshold PCK Operations

Conventional – 0.8181 1.591× 1011

EvNet 0.01 0.8171 2.324× 1010

EvNet 0.02 0.8200 1.903× 1010

EvNet 0.04 0.8073 1.446× 1010

EvNet 0.06 0.7785 1.196× 1010

EvNet 0.08 0.7489 1.033× 1010

Skip-Conv 0.01 0.8065 2.183× 1010

Skip-Conv 0.02 0.7656 1.660× 1010

Skip-Conv 0.04 0.6852 1.212× 1010

Skip-Conv Reset 0.01 0.8084 2.344× 1010

Skip-Conv Reset 0.02 0.7689 1.886× 1010

Skip-Conv Reset 0.04 0.6940 1.497× 1010

Table I. Video Object Detection for Larger Images. The corrolary of Table F,
but for larger input images (320× 544 instead of 224× 384).

Model Threshold mAP50 Operations

Conventional – 0.5655 3.164× 1010

EvNet 0.01 0.5658 1.527× 1010

EvNet 0.02 0.5679 1.246× 1010

EvNet 0.04 0.5726 9.289× 109

EvNet 0.08 0.5785 6.284× 109

EvNet 0.12 0.5616 4.714× 109

EvNet 0.16 0.5007 3.686× 109

Skip-Conv 0.01 0.5525 1.498× 1010

Skip-Conv 0.02 0.4716 1.164× 1010

Skip-Conv 0.04 0.3140 7.726× 109

Skip-Conv Reset 0.01 0.5552 1.656× 1010

Skip-Conv Reset 0.02 0.4624 1.366× 1010

Skip-Conv Reset 0.04 0.2829 1.026× 1010
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Table J. Operation Overhead for Larger Images. The corrolary of Table G, but
for larger input images (352× 480 for OpenPose and 320× 544 for YOLO).

Model Threshold Load/Store Memory

OpenPose 0.01 0.15% 0.26%
OpenPose 0.02 0.13% 0.23%
OpenPose 0.04 0.11% 0.19%
OpenPose 0.06 0.09% 0.16%
OpenPose 0.08 0.08% 0.14%
YOLO 0.01 0.85% 1.51%
YOLO 0.02 0.71% 1.23%
YOLO 0.04 0.60% 1.00%
YOLO 0.08 0.50% 0.81%
YOLO 0.12 0.44% 0.71%
YOLO 0.16 0.40% 0.64%
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