
Interpretable Image Classification with
Differentiable Prototypes Assignment –

Supplementary Materials

Dawid Rymarczyk1,2 , Lukasz Struski1 , Micha l Górszczak1 ,
Koryna Lewandowska3 , Jacek Tabor1 , and Bartosz Zieliński1,2

1 Faculty of Mathematics and Computer Science, Jagiellonian University
2 Ardigen SA

3 Department of Cognitive Neuroscience and Neuroergonomics,
Institute of Applied Psychology, Jagiellonian University

1 Details on experimental setup

We use two datasets, CUB-200-2011 [10] consisted of 200 species of birds and
Stanford Cars [5] with 196 car models. For both datasets, images are augmented
offline using parameters from Table 1, and the process of data preparation is the
same as in [1]4.

Table 1: Augmentation policy.

Augmentation Value Probability

Rotation [−15◦, 15◦] 1.0
Flip Vertical 0.5
Flip Horizontal 0.5
Skew < 45◦ 0.5
Shear [−10◦, 10◦] 1.0
Mix-up [9] 50% : 50% 1.0

Our model consists of the convolutional part f that is a convolutional block
from ResNet or DenseNet followed by 1×1 convolutional layer required to trans-
form the latent space depth to 128 for Stanford Cars and 256 for CUB-200-2011.
We perform a warmup training where the weights of f are frozen for 10 epochs,
and then we train the model until it converges with 12 epochs early stopping.
After convergence, we perform prototype projection and fine-tune the last layer.
We use the learning schema presented in Table 2.

Additionally, we employ Adam optimizer [4] with parameters β1 = 0.9 and
β2 = 0.999. We set the batch size to 80 and use input images of resolution

4 see Instructions for preparing the data at https://github.com/cfchen-duke/

ProtoPNet

https://orcid.org/0000-0002-3406-6732x
https://orcid.org/0000-0003-4006-356X
https://orcid.org/0000-0003-3695-0975
https://orcid.org/0000-0003-4826-6361
https://orcid.org/0000-0001-6652-7727
https://orcid.org/0000-0002-3063-3621
https://github.com/cfchen-duke/ProtoPNet
https://github.com/cfchen-duke/ProtoPNet

2 Rymarczyk et al.

Table 2: Learning schema for the ProtoPool model.

Phase Model layers Learning rate Scheduler Weight decay Duration

Warm-up
add-on 1×1 convolution 1.5 · 10−3

None None 10 epochs
prototypical pool 1.5 · 10−3

Joint

convolutions f 5 · 10−5
by half every

5 epochs
10−3 12 epoch

early stopping
add-on 1×1 convolution 1.5 · 10−3

prototypical pool 1.5 · 10−3

After
last layer 10−4 None None 15 epochs

projection

224×224×3. Moreover, we use prototypical parts of size 1×1×128 and 1×1×256
for Stanford Cars and CUB-200-2011 respectively. The weights between the class
logit and its slots are initialized to 1, while the remaining weights of the last layer
are set to 0. All other parameters of the network are initialized with Xavier’s
normal initializer.

We utilize the Gumbel-Softmax trick to unambiguously assign prototypes to
class slots. However, in contrast to the classic variant of this parametrization
trick, we reduce the influence of the noise in subsequent iterations. For this

purpose, we use yi =
exp(qi/τ+ηi)∑M

m=1 exp(qm/τ+ηm)
instead of yi =

exp((qi+ηi)/τ)∑M
m=1 exp((qm+ηm)/τ)

in

Gumbel-Softmax distribution

Gumbel-softmax(q, τ) = (y1, . . . , yM) ∈ RM ,

where τ ∈ (0,∞) and q ∈ RM . Moreover, we start the Gumbel-Softmax distri-
bution with τ = 1, decreasing it to 0.001 for 30 epochs. As a decrease function,
we use

τ(epoch) =

{
1/
√
α · epoch if epoch <30

0.001 otherwise
,

where α = 3.4 · 104. We use the following weighting schema for loss function:
Lentropy = 1.0, Lclst = 0.8, Lsep = −0.08, Lorth = 1.0, and Ll1 = 10−4. Finally,
we normalize Lorth, dividing it by the number of classes multiplied by the number
of slots per class.

2 Generating names of prototypical parts

To name the prototype for CUB-200-2011, we used the attributes of images
collected with Amazon Mechanical Turk that are provided together with the
dataset. Firstly, for a given image, we filter out attributes assigned by less than
20% users. Then, for each class, we remove attributes present at less than 20%
of testing images assigned to this class. Later, we use five nearest patches of a
given prototype to determine if they are consistent and point to the same part of
the bird. Eventually, we choose the attributes accurately describing the nearest
patches for a given prototype (see Figure 1 from the main paper).

Interpret. img Class. with Differentiable Prototypes Assignment 3

ProtoPool w/o Focal Similarity ProtoTree ProtoPool (ours)

Fig. 1: Sample prototype activation maps obtained with models using various
similarity functions. One can observe that ProtoPool with the focal similarity
is the only one that focuses on car features like a spoiler, reflector, and Ferrari
logo when the other similarities focus on image borders or much larger regions.
Since similarity function is a design choice of the model, the images from which
the prototypical parts derive are different.

3 Results for other backbone networks

In Table 3, we present the results for ProtoPool with DenseNet as a backbone
network. Moreover, in Figure 1, we present examples of prototypes derived from
three different methods: ProtoPool, ProtoTree, and ProtoPool without focal sim-
ilarity.

4 Comparison of the prototypical models

In Table 4, we present the extended version of prototypical-based model com-
parison. One can observe that ProtoPool is the only one that has a differentiable
prototypical parts assignment. Additionally, it processes the data simultaneously,
which is faster and easier to comprehend by humans [2] than sequential process-
ing obtained from the ProtoTree [6]. Lastly, ProtoPool, as ProtoPShare, directly
provides class similarity that is visualized in the Figure 2.

5 Details on ablation study

As an attachment to Table 4 from the main paper, in Figure 3 we provide
the matrices of prototype assignment. Moreover, in Figure 4, we present the
distribution of values from the prototype assignment matrix for corresponding
datasets. As presented, only the ProtoPool model obtains bimodal distribution
of 0 and 1, resulting in the binary matrix.

4 Rymarczyk et al.

Table 3: Comparison of ProtoPool with other methods based on prototypical
parts trained on the CUB-200-2011 and Stanford Cars datasets, considering a
various number of prototypes and types of convolutional layers f . ProtoPool
achieves competitive results, even for models with ten times more prototypes
in the case of both datasets. Please note that the results are first sorted by
backbone network and then by the number of prototypes.

Data Model Architecture Proto. # Acc [%]

C
U
B
-2
0
0
-2
0
1
1

ProtoPool (ours)

DenseNet121

202 73.6± 0.4
ProtoPShare [8] 600 74.7
ProtoPNet [1] 1476 79.2
TesNet [11] 2000 84.8± 0.2

ProtoPool (ours)

DenseNet161

202 80.3± 0.3
ProtoPShare [8] 600 76.5
ProtoPNet [1] 1527 79.9
TesNet [11] 2000 84.6± 0.3

C
a
rs

ProtoPool (ours)

DenseNet121

202 86.4± 0.1
ProtoPShare [8] 980 84.8
ProtoPNet [1] 2000 86.8± 0.1
TesNet [11] 2000 92.0± 0.3

Table 4: Comparison of prototypical methods for fine-grained image classifica-
tion. One can observe that ProtoPool uses only 10% of ProtoPNet’s prototypes,
remaining interpretable due to the positive reasoning process. Additionally, Pro-
toPool, similarly to the ProtoPShare, detects inter-class similarity and shares
the prototypes. But, it is trained end-to-end thanks to the differentiable proto-
types assignment. On the other hand, ProtoTree is the only model presenting
the explanation in a hierarchical way, which requires more time to comprehend
according to human cognitive system theory [2].

Model Proto. #
Diff. proto. Information Reasoning

type
Proto.
sharing

Class
similarityassignment processing

ProtoPNet 100% no simultaneous positive none none

TesNet 100% no simultaneous positive none none
ProtoPShare [20%;50%] no simultaneous positive direct direct

ProtoTree 10% no successive positive/negative indirect indirect
ProtoPool 10% yes simultaneous positive direct direct

Interpret. img Class. with Differentiable Prototypes Assignment 5

Mazda
Tribute SUV

20113.25 ± 0.5

2.25 ± 0.5

2.25 ± 0.5

1.25 ± 0.2

0.75 ± 0.25

1.
5 ±

 0.
3

0.75 ± 0.5

2.0 ± 0.6

1 ± 0.5

Chevrolet
Cobalt SS 2010

BMW 3
Series

Wagon 2012

Rolls-Royce
Phantom

Sedan 2012

Acura TL
Sedan 2012

Fig. 2: Sample graph obtained from ProtoPool for five classes from the Stanford
Cars dataset. Each class is represented by a single image, and the edges corre-
spond to the mean number of prototypes shared between classes over five rep-
etitions. One can observe that ProtoPool discovered similarities between SUVs
and Sedans, while Rolls-Royce and BMW have nothing in common. Moreover,
the graphs are consistent between runs and discover similar relations between
classes.

6 Details on user study

To ensure a broad spectrum of the users, we ran the AMT batches at four differ-
ent hours (8 AM, 2 PM, 8 PM, 12 PM CET) and required balanced sex in (53%
of women) and versatile age (from 20 to 60) of the users. Each user assessed
examples of prototypical parts generated by ProtoPool, ProtoTree [7] and Pro-
toPool without focal similarity in a randomized order. The user did not know
which image was generated by which model, and there was no difference in pre-
processing those images between models. Each person answered ten questions for
each dataset and model combination, resulting in 60 responses per participant.
These 60 images were randomly selected from the pool of 180 images (30 for
each combination of dataset and model). Each user had unlimited time for the
answer. The task was to assign a score from 1 to 5 where 1 meant “Least salient”
and 5 meant “Most salient”. A sample question is presented in Figure 5 and the
results are shown in Table 5. One can observe that ProtoPool achieves the high-
est number of positive answers (4 and 5). Additionally, ProtoTree is better for
Stanford Cars rather than CUB-200-2011, which can be correlated to the weaker
intra-class similarity in the case of car models [7]. Overall, we conclude that the
enrichment of the model with focal similarity substantially improves the model
interpretability and better detects salient features.

6 Rymarczyk et al.

(a) ProtoPool (b) w/o Gumbel-Softmax trick

(c) w/o Lorth (d) w/o Lorth and Gumbel-Softmax trick

(e) ProtoPool (f) w/o Gumbel-Softmax trick

(g) w/o Lorth (h) w/o Lorth and Gumbel-Softmax trick

Fig. 3: The influence of novel architectural changes on prototypes to slots assign-
ments for ten randomly chosen classes of the CUB-200-2011 (a-d) and Stanford
Cars (e-h) datasets. Each class has ten slots (corresponding to columns) to which
a prototype (corresponding to rows) can be assigned. As observed, the binariza-
tion of the assignment (hard assignment of a prototype) is obtained only for a
mix of Gumbel-Softmax and Lorth. Moreover, if one of those factors is missing,
the assignment matrix is random or aims to assign the same prototype to all
slots. Note that the scale of heatmap colors differs between examples for clarity.

Interpret. img Class. with Differentiable Prototypes Assignment 7

0.0 0.2 0.4 0.6 0.8 1.0
q values

10 2

10 1

100

pr
op

or
tio

n

(a) ProtoPool

0.0 0.2 0.4 0.6 0.8 1.0
q values

10 4

10 2

100

pr
op

or
tio

n

(b) w/o Gumbel-Softmax trick

0.0 0.2 0.4 0.6 0.8 1.0
q values

10 4

10 2

100

pr
op

or
tio

n

(c) w/o Lorth

0.0 0.2 0.4 0.6 0.8 1.0
q values

10 4

10 2

100

pr
op

or
tio

n

(d) w/o Lorth and Gumbel-Softmax trick

0.0 0.2 0.4 0.6 0.8 1.0
q values

10 2

10 1

100

pr
op

or
tio

n

(e) ProtoPool

0.0 0.2 0.4 0.6 0.8 1.0
q values

10 4

10 2

100

pr
op

or
tio

n

(f) w/o Gumbel-Softmax trick

0.0 0.2 0.4 0.6 0.8 1.0
q values

10 4

10 2

100

pr
op

or
tio

n

(g) w/o Lorth

0.0 0.2 0.4 0.6 0.8 1.0
q values

10 4

10 2

100

pr
op

or
tio

n

(h) w/o Lorth and Gumbel-Softmax trick

Fig. 4: The influence of novel architectural changes on the values of prototypes
to slots assignments (q distributions) for the CUB-200-2011 (a-d) and Stanford
Cars (e-h) datasets. One can observe that only the ProtoPool model binarizes q
distributions. Note that the histograms are in logarithmic scale and normalized.

Fig. 5: Sample question from the user study questionnaire.

8 Rymarczyk et al.

Table 5: User study results show that only ProtoPool has the most positive
votes (4 and 5) in both datasets. Additionally, ProtoTree is more interpretable
for Stanford Cards than for CUB-200-2011.

Model Dataset
Answers

1 2 3 4 5

ProtoPool

CUB-200-2011

3 26 107 151 113
ProtoTree 143 76 73 53 55
ProtoPool w/o

100 61 88 98 53
focal similarity

ProtoPool

Stanford Cars

12 57 139 116 76
ProtoTree 21 101 106 108 64
ProtoPool w/o

70 103 96 79 52
focal similarity

7 Limitations

Our ProtoPool model inherits its limitations from the other prototype-based
models, including non-obvious prototype meaning. Hence, even after prototype
projection from a training dataset, there is still uncertainty on which attributes
it represents. However, there exist ways to mitigate this limitation, e.g. using a
framework defined in [6]. Additionally, the choice of Gumbel-Softmax tempera-
ture τ and its decreasing strategy are not straightforward and require a careful
hyperparameter search. Lastly, in the case of ProtoPool, increasing the number
of prototypes does not increase the model accuracy after some point because the
model saturates.

8 Negative impact

We base our solution on prototypical parts, which are vulnerable to a new type
of adversarial attacks [3]. Hence, practitioners must consider this danger when
deploying a system with a ProtoPool. Additionally, it can spread disinformation
when prototypes derive from spoiled data or are presented without an expert
comment, especially in fields like medicine.

9 Additional discussion

Why focal similarity works – the intuition. Focal similarity computes the
similarity between patches and prototypes, which is then passed to the classifi-
cation layer of the network, where standard CE loss is used. The big advantage
of focal similarity is its ability to propagate gradient through all patches by
subtracting the mean from the maximum similarity. In contrast to the original
approach [8], which propagates gradient only through the patch with the maxi-
mum similarity. This way, ProtoPool generates salient prototypes that activate

Interpret. img Class. with Differentiable Prototypes Assignment 9

only in a few locations and return values close to zero for the remaining im-
age parts (see Fig. 6). From this perspective, using the median instead of the
mean would again limit gradient propagation to two patches (with maximum
and median similarity).

Fig. 6: Distribution of similarity values for focal similarity and classic ap-
proach [8] over 1000 images. As a result of replacing the original approach with
focal similarity, the distribution changes from unimodal to bimodal.

Saturation of model capacity. The model reaches a plateau for around
200 prototypes, and there is no gain in further increase of prototype number.
Therefore, the practitioners cannot sacrifice some interpretability to gain higher
accuracy. In fact, this trend is also observed in the other methods with shared
prototypes, like ProtoTree (see Fig. 7 in [7]). While we have no clear explana-
tion for this phenomenon, we assume it can be caused by the entanglement of
the prototypes. Therefore, one possible solution would be to enforce the proto-
types orthogonality, as proposed in TesNet [11]. The other option would be to
modify the training procedure so that it iteratively adds new slots to each class
corresponding to new pools of prototypes.

Focal similarity vs. reasoning type While the negative reasoning process
draws conclusions based on the prototype’s absence (”this does not look like that
prototype”), the focal similarity concludes based on the prototype’s presence
(”this looks like that salient prototype, which usually occurs only one time”).
For example, the negative reasoning could say: ”this is a goat because it has no
wings”, while the focal similarity would rather say: ”this is a goat because it has
a goatee (a salient goat feature)”.

Necessity for sharing prototypes We would like to recall the observation
provided in [8]. It shows that after training ProtoPNet with exclusive prototypes,
patches’ representations are clustered around prototypes of their true classes,
and the prototypes from different classes are well-separated. As a result, the
prototypes with similar semantics can be distant in representation space (see
Fig. 2 in [8]), resulting in unstable predictions. That is why it is essential to
share the prototypes between classes.

User studies statistics We provide additional statistics regarding the re-
sults of user studies. The confidence intervals are as follows: ProtoPool (our):

10 Rymarczyk et al.

3.66 ± 2.00, ProtoPool w/o focal similarity: 2.85 ± 2.63, ProtoTree: 2.87 ± 2.68.
Moreover, we performed a Mann-Whitney U test to determine whether of Pro-
toPool (our) scores are higher than ’ProtoPool w/o focal similarity and Pro-
toTree. We obtained p-value= 2.78 · 10−12 and 1.16 · 10−11, respectively. Since
both p-values are smaller than 0.05, we reject the null hypothesis and conclude
that the ProtoPool is significantly better than other methods.

Prototypes in a hard vs soft assignment Through the development pro-
cess, we experimented with the soft assignment (Softmax instead of Gumbel-
Softmax). However, we observed that the model struggles to separate the proto-
types in the latent space, even with the increased weight of a separation cost, and
prototypes usually converge to one point in representation space. On the other
hand, using only the hard assignments hinders the change in assignments during
training. That is why we decided to use a hybrid approach, where we start with
soft assignments and binarize them with Gumbel-Softmax. It allows the cluster
and separation costs to roughly organize latent space with a soft assignment at
the beginning and then refine it as the hard assignment dominates.

References

1. Chen, C., Li, O., Tao, D., Barnett, A., Rudin, C., Su, J.K.: This looks like that: deep
learning for interpretable image recognition. In: NeurIPS. pp. 8930–8941 (2019)

2. Fiske, S.T., Taylor, S.E.: Social cognition. Mcgraw-Hill Book Company (1991)
3. Hoffmann, A., Fanconi, C., Rade, R., Kohler, J.: This looks like that... does it?

shortcomings of latent space prototype interpretability in deep networks. arXiv
preprint arXiv:2105.02968 (2021)

4. Kingma, D.P., Ba, J.L.: Adam: A method for stochastic optimization. In: ICLR
2015 : International Conference on Learning Representations 2015 (2015)

5. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3d object representations for fine-
grained categorization. In: Proceedings of the IEEE international conference on
computer vision workshops. pp. 554–561 (2013)

6. Nauta, M., Jutte, A., Provoost, J., Seifert, C.: This looks like that, be-
cause... explaining prototypes for interpretable image recognition. arXiv preprint
arXiv:2011.02863 (2020)

7. Nauta, M., et al.: Neural prototype trees for interpretable fine-grained image recog-
nition. In: CVPR. pp. 14933–14943 (2021)

8. Rymarczyk, D., et al.: Protopshare: Prototypical parts sharing for similarity dis-
covery in interpretable image classification. In: SIGKDD. pp. 1420–1430 (2021)

9. Thulasidasan, S., Chennupati, G., Bilmes, J.A., Bhattacharya, T., Michalak, S.: On
mixup training: Improved calibration and predictive uncertainty for deep neural
networks. In: Advances in Neural Information Processing Systems. vol. 32, pp.
13888–13899 (2019)

10. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd
birds-200-2011 dataset (2011)

11. Wang, J., et al.: Interpretable image recognition by constructing transparent em-
bedding space. In: ICCV. pp. 895–904 (2021)

	Interpretable Image Classification with Differentiable Prototypes Assignment – Supplementary Materials

