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In this supplementary material, we provide some detailed explanations on
our method and implementation details in the experiment section.

1 More Method Details

1.1 Face Reconstruction Analysis

The motivation of using face reconstruction in our method is that, although
it cannot reconstruct the perfect live faces given its spoof counterpart, but it
can largely shed the light on spatial pixel location where spoofness occurs. As
introduced in Sec. 3.2, we use such a reconstruction method to generate the
preliminary mask Ipre as the pseudo label that supervises the proposed SRE.
We offer the detailed visualization in Fig. 1.

In general, we have categorized spoof types into three main genera: (a) cov-
ered materials; (b) makeup stroke; (c) visual artifacts (i.e., color distortion and
moire effect) in the replay and print attacks. In particular, for covered materi-
als, reconstruction methods largely erase these spoof materials, such as funny
glasses, and human mask. As shown from Fig. 1, Ipre can roughly locate the
pixel-wise spatial location that has been covered by the spoof material, and the
estimated spoof region gives the more accurate prediction on pixels that are
covered by these spoof materials. For makeup stroke, the reconstruction method
changes the color and texture of the facial makeup area, making them similar to
the natural skin. Ipre offers the scattered, discrete binary mask and estimated
spoof region provides the smoother region indicating the spoofness. For replay
and print attacks, the reconstruction method modifies facial structure (i.e., nose
and eyes) of the human face, or largely change the image’s appearance, by pro-
viding the image with a sense of depth. Similar as makeup stroke genera, Ipre
gives very discontinuous predictions on spoofness whereas the estimated spoof
region is smoother and semantic.

1.2 Model Response

When a target domain image Itarget is fed to the pre-trained model, the pre-
trained model will be activated, as if the pre-trained model takes as input source
domain images Isource which has resemblance with Itarget. In other words, the
pre-trained model recognizes it as source domain images Isource which has com-
mon characteristic and pattern with Itarget. Therefore, source data can manifest
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Fig. 1. The visualization of (a) input spoof image, (b) live counterpart reconstruction,
(c) generated preliminary mask, and (d) estimated spoof region from our method. Three
columns (from left to right) represent three different spoof genera, covered material,
makeup stroke and visual artifacts from replay and print attack.

themselves on the response of the model, or in other words, keeping model re-
sponse allows us to have memory or characteristics of the source data. With
the development of deep learning, model can generate valid response in different
applications [4, 5, 7, 1].

2 Experimental Results

2.1 PhySTD method details

In the experimental section, we apply FAS-wrapper on PhySTD for the analy-
sis in Sec.5.2. In this section, we introduce the detailed architecture of PhySTD,
which is illustrated in Fig. 2. Given the input image, PhySTD predicts spoofness,
and disentangle the spoof trace into additive traces and inpainting components
(e.g., inpainting trace and region trace). Specifically, we firstly decompose the
input image into three elements which represent the image information at dif-
ferent frequency levels. The feature extractor takes the concatenation of these
three elements and generate multi-scale features which are fed to depth esti-
mation branch for estimating the image depth, and three trace branches for
estimating inpanting trace, region trace, and additive trace, respectively. Such
three traces can be used to synthesize the live image, and this synthesized live
image along with the genuine live image are fed to a multi-scale discriminator
which is trained through the adversarial training.

2.2 The implementation details of prior methods

We are the first work that studies MD-FAS, in which no source data being
available during the model updating process. To the best of our knowledge,
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Fig. 2. The detailed architecture of PhySTD. The overall architecture contains Dis-
entangle Generator and Multi-scale Discriminators. Notably, in the architecture of
PhySTD, each convolutional layer is followed by Batch Normalization layer, RELU
activation function and Dropout. This level of details is not included here.
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Fig. 3. In (a), we modify the pre-trained FAS model into a binary classifier. In (b) and
(c), we modified architectures for LwF and LwM methods.

there does not exist FAS works in such a source-free scenario. Therefore, in
order to have a fair comparison, we need to implement methods from other
topics (e.g., anti-forgetting learning and multi-domain learning) on FAS dataset.
In this section, we explain our implementation details on prior methods.

The implementation details of prior anti-forgetting methods We com-
pare our methods to prior works that have anti-forgetting mechanism: LwF
[8], LwM [3] and MAS [2]. Firstly, we pre-train the FAS model that is based
on PhySTD on the source domain dataset. After the pre-training, we concate-
nate output feature maps generated from the last convolution layer in different
branches as a new concatenated feature maps. Then we feed such feature maps
through Global Average Pooling Layer and a fully-connected (FC) layer, such
that we can obtain a binary classifier. The details are depicted in Fig. 3(a). We
fix the pre-trained FAS model weights and train the last FC layer. As a result,
we can use concatenated feature maps for a binary classification result indicat-
ing spoofness. We denote newly-added layers as the Logits block, part of which
generates the class activate map is denoted as Grad-CAM block. We use these
two blocks with the original FAS model for implementing LwF and LwM, as
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Fig. 4. Based on the RseNet building block (a), [9, 10] have proposed RseNet modified
building blocks in (b) and (c) for learning multiple domain knowledge. Likewise, given
two consecutive building blocks in PhySTD, we construct modified building blocks,
based on [9, 10], in (e) and (f).

illustrated in Fig. 3 (b)(c). In terms of MAS [2], we apply the publicly avail-
able source code 1 on the binary classifier we construct, without significantly
changing the architecture.

The implementation details of multi-domain learning methods Seri.
Res-Adapter [9], and Para. Res-Adapter [10] are proposed for learning knowl-
edge in multiple visual domains. Specifically, they use domain-specific adapter to
enhance model ability in learning a universal image representation for multiple
domains. They design such an idea on ResNet [6], which can be seen in Fig. 4.
Based on the same idea, we modify the building block in PhySTD for learning
the new domain knowledge. Notably, we have examine different adapter archi-
tectures, such as convolution filter with kernel size 1× 1, 3× 3, 5× 5 and 7× 7 ,
and find that 1×1 convolution offers the best FAS performance. We also consider
the publicly available source code 2 as the reference for the implementation.

1 https://github.com/rahafaljundi/MAS-Memory-Aware-Synapses
2 https://github.com/srebuffi/residual adapters
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