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1 Real World Scenario Where the RCRMR-LD Problem
Can Occur

A real-world scenario where our proposed RCRMR-LD problem can arise is
federated learning [3]. In the federated learning setting, there are multiple col-
laborators that have a part of the training data stored locally, and a model is
trained collaboratively using these private data without sharing or collating the
data due to privacy concerns. Suppose organization A has a part of the training
data, and there are other collaborators that have other parts of the training
data for the same classes. Organization A collaboratively trains a model with
other collaborators using federated learning. After the model has been trained, a
few classes may become restricted in the future due to some ethical or privacy
concerns, and these classes should be removed from the model. However, the other
collaborators may not be available or may charge a huge amount of money for
collaborating again to train a fresh model from scratch. In this case, organization
A does not have access to the full training data of the non-excluded/remaining
classes that it can use to re-train a model from scratch in order to exclude the
restricted classes information. This clearly shows that the RCRMR-LD problem
is present in federated learning.

2 Process for Selecting the Restricted Class Relevant
Parameters

In this section, we provide a detailed description of our process for selecting
the restricted class relevant parameters. First, we apply a data augmentation
technique f , not used during training, to the images of the given restricted class.
Next, we combine the predictions for these images and perform backpropagation.
Finally, we select the parameters with the highest absolute gradient as the
relevant parameters for the corresponding restricted class. Specifically, for a
given restricted class, we choose all the parameters from each network layer such
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that pruning these parameters will result in the maximum degradation of model
performance on that restricted class. We use a process similar to the binary search
for automatically selecting the parameters with the highest absolute gradient.

We first create a list of parameters in each layer, sort them in descending
order according to the absolute gradient values, and check if zeroing out the
weights of the first 20% parameters from this list for a particular layer leads to
low accuracy (less than 10% for ResNet-164 on CIFAR-100) for that class. If the
accuracy is not low after zeroing out the chosen parameters, then we select double
the number of parameters chosen earlier and repeat this process. However, if the
accuracy is low after zeroing out the chosen parameters, we still need to check if
a low accuracy can be achieved by zeroing out fewer parameters. To check this,
we reduce the number of parameters by half the difference between the current
and previously chosen number of parameters and observe the effect of zeroing out
these parameters. If the accuracy is low for the reduced parameters, then we stop
the process with the current set of parameters as the relevant parameters for the
current restricted class. If the accuracy is not low for the reduced parameters,
then we take the previously chosen higher number of parameters as the relevant
parameters of the layer for the current restricted class. We repeat this process
for all the restricted classes to obtain the relevant parameters for each restricted
class in all the layers. The combined set of the relevant parameters for all the
excluded classes is referred to as the restricted/excluded class relevant parameters.
Please note that this process is just for identifying the parameters relevant to
the restricted classes, and their weights are restored after this process.

3 Baselines

We propose 9 baseline models for the RCRMR-LD problem and compare our
proposed approach with them. The baseline 1 involves deleting the weights of
the fully-connected classification layer corresponding to the excluded classes.
Baselines 2, 3, 4, 5 involve training the model on the limited training data of
the remaining classes. Baselines 6, 7, 8, 9 involve fine-tuning the model on the
available limited training data. The details about the baselines are provided
below:

Original model: It refers to the original model that is trained on the complete
training set containing all the training examples from both the excluded and
non-excluded classes. It represents the model that has not been modified by any
technique to remove the excluded class information.

Baseline 1 - Weight Deletion (WD): It refers to the original model with
a modified fully-connected classification layer. Specifically, we remove the weights
corresponding to the excluded classes in the fully-connected classification layer
so that it cannot classify the excluded classes.

Baseline 2 - Training from Scratch on Limited Non-Restricted Class
data (TSLNRC): In this baseline, we train a new model from scratch using the
limited training examples of only the non-excluded classes. It uses the complete
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training schedule as the original model and only uses the classification loss for
training the model.

Baseline 3 - Training from Scratch on Limited Non-Restricted Class
data with KD (TSLNRC-KD): This baseline is the same as baseline 2, but
in addition to the classification loss, it also uses a knowledge distillation loss to
ensure that the non-excluded class logits of the model (student) match that of
the original model (teacher).

Baseline 4 - Training of Original model on Limited Non-Restricted
Class data (TOLNRC): This baseline is the same as baseline 2, but the
model is initialized with the weights of the original model instead of randomly
initializing it.

Baseline 5 - Training of Original model on Limited Non-Restricted
Class data with KD (TOLNRC-KD): This baseline is the same as baseline
4, but in addition to the classification loss, it also uses a knowledge distillation
loss.

Baseline 6 - Fine-tuning of Original model on Limited data after
Mapping Restricted Classes to a Single Class (FOLMRCSC): In this
baseline approach, we first replace all the excluded class labels in the limited
training data with a new single excluded class label and then fine-tune the
original model for a few epochs on the limited training data of both the excluded
and remaining classes. In the case of the examples from the excluded classes,
the model is trained to predict the new single excluded class. In the case of
the examples from the remaining classes, the model is trained to predict the
corresponding non-excluded classes.

Baseline 7 - Fine-tuning of Original model on Limited data after
Mapping Restricted Classes to a Single Class with KD (FOLMRCSC-
KD): This baseline is the same as baseline 6, but in addition to the classification
loss, it also uses a knowledge distillation loss to ensure that the non-excluded
class logits of the model (student) match that of the original model (teacher).

Baseline 8 - Fine-tuning of Original model on Limited Non-Restricted
Class data (FOLNRC): In this baseline approach, we fine-tune the original
model for a few epochs on the limited training data of non-excluded/remaining
classes. The model is trained to predict the corresponding non-excluded classes
of the training examples.

Baseline 9 - Fine-tuning of Original model on Limited Non-Restricted
Class data with KD (FOLNRC-KD): This baseline is the same as baseline 8,
but in addition to the classification loss, it also uses a knowledge distillation loss.

4 Experiments

4.1 Datasets

For the RCRMR-LD problem setting, we modify the CIFAR-100 [2], CUB-200 [7]
and ImageNet-1k [5] datasets. In order to simulate the RCRMR-LD problem
setting with limited training data, we choose the last 20 classes of the CIFAR-100
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dataset as the excluded classes and take only 10% of the training images of each
class. Similarly, we choose the last 20 classes of the CUB-200 dataset as the
excluded classes with only 3 training images per class. For ImageNet-1K, we
choose the last 100 classes as the excluded classes with 5% of the training images
to simulate the limited data available for this problem setting.

4.2 Implementation Details

In this section, we provide all the details required to reproduce our experimental
results. We use the ResNet-20 [1], ResNet-56, ResNet-164 architectures for the
experiments on the CIFAR-100 dataset. We use the standard data augmentation
methods of random cropping to a size of 32 × 32 (zero-padded on each side
with four pixels before taking a random crop) and random horizontal flipping,
which is a standard practice for training a model on CIFAR-100. In order to
obtain the original and FDR models for the CIFAR-100 dataset, we train the
network for 300 epochs with a mini-batch size of 64 using the stochastic gradient
descent optimizer with momentum 0.9 and weight decay 1e− 4. We choose the
initial learning rate as 0.1, and we decrease it by a factor of 5 after the 90,
150, 210, 240, and, 270 epochs. For the CIFAR-100 experiments with ERwP
using the ResNet-20, ResNet-56, and ResNet-164 architectures, we use learning
rate= 1e− 4, β = 10 and optimize the network for 10 epochs. Since the available
limited training data is only 10% of the entire CIFAR-100 dataset, therefore, our
ERwP approach is approximately 30 ∗ 10 = 300× faster than the FDR method.

For the experiments on the ImageNet dataset, we use the ResNet-18, ResNet-
50, and MobileNet-V2 architectures. We use the standard data augmentation
methods of random cropping to a size of 224×224 and random horizontal flipping,
which is a standard practice for training a model on ImageNet-1k. In order to
obtain the original and FDR models for the ImageNet dataset, we train the
network for 100 epochs with a mini-batch size of 256 using the stochastic gradient
descent optimizer with momentum 0.9 and weight decay 1e− 4. We choose the
initial learning rate as 0.1, and we decrease it by a factor of 10 after every 30
epochs. For evaluation, the validation images are subjected to center cropping of
size 224× 224. For the ImageNet-1k experiments (5% training data) with ERwP
using the ResNet-50 architecture, we optimize the network for 10 epochs with
a learning rate of 9e − 5 using β = 200. For the ERwP experiments using the
ResNet-18 architecture, we optimize the network for 10 epochs using β = 200
with an initial learning rate of 1.1e− 4 and a learning rate of 1.1e− 5 from the
third epoch onward. In the case of the ERwP experiments with the MobileNet-V2
architecture, we optimize the network for 10 epochs using β = 400 with an initial
learning rate of 1.5e−4 and a learning rate of 1.5e−5 from the third epoch onward.
Since the available limited training data is only 5% of the entire ImageNet-1k
dataset, therefore, our ERwP approach is approximately 20 ∗ 10 = 200× faster
than the FDR method. For the experiments on the CUB-200 dataset, we use the
ResNet-50 architecture pre-trained on the ImageNet dataset. In order to obtain
the original and FDR models for the CUB-200 dataset, we train the network
for 50 epochs with a mini-batch size of 64 using the stochastic gradient descent
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Table 1: Experimental results on the CUB-200 dataset with ResNet-50 architecture
for the RCRMR-LD problem with 20 excluded classes using only 3 training images
per class

Methods FAe FPAe CAne

Original 85.20% 84.69% 77.37%

No Training
Baseline 1 - WD 0.00% 84.69% 77.64%

Full Train Schedule
Baseline 2 - TSLNRC 0.00% 30.27% 27.56%
Baseline 3 - TSLNRC-KD 0.00% 35.54% 31.66%
Baseline 4 - TOLNRC 0.00% 60.37% 64.60%
Baseline 5 - TOLNRC-KD 0.00% 68.37% 70.48%

Only Fine-Tuning
Baseline 6 - FOLMRCSC 53.40% 77.38% 74.39%
Baseline 7 - FOLMRCSC-KD 60.88% 81.12% 75.14%
Baseline 8 - FOLNRC 84.86% 84.18% 76.85%
Baseline 9 - FOLNRC-KD 84.35% 85.20% 77.70%
ERwP (Ours) 0.77% 48.89% 75.45%

optimizer with momentum 0.9 and weight decay 1e− 3. We choose the initial
learning rate as 1e− 2, and we decrease it by a factor of 10 after epochs 30 and
40. For the CUB-200 experiments (3 images per class, i.e., 10% training data)
with ERwP using the ResNet-50 architecture, we optimize the network for 10
epochs with a learning rate of 1e− 4 using β = 10. Since the available limited
training data is only 10% of the entire CUB-200 dataset, therefore, our ERwP
approach is approximately 5 ∗ 10 = 50× faster than the FDR method.

In our proposed approach, we use κ = 2 for all the experiments (see Sec. 5.5
in the supplementary material). We use a popular Pytorch implementation1 for
performing knowledge distillation. We run all the experiments 5 times and report
the average accuracy. We perform all the experiments using the Pytorch [4] and
Python 3.0. We use 4 GeForce GTX 1080 Ti graphics processing units for our
experiments.

4.3 CUB-200 Results

Table 1 reports the experimental results for different approaches to the RCRMR-
LD problem over the CUB-200 dataset using the ResNet-50 architecture. Our
proposed ERwP approach achieves a constraint accuracy CAne that is very close to
that of the original model even though we use only 3 images per class for optimiz-
ing the model. It achieves close to 0% forgetting accuracy FAe and achieves a FPAe

1 https://github.com/peterliht/knowledge-distillation-pytorch/blob/master/model/net.py
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Fig. 1: Ablation to validate our approach for identifying relevant model parameters
for a random restricted class of CIFAR-100

that is significantly lower than that of the original model by an absolute margin
of 35.80%. Our ERwP approach outperforms all the baseline approaches. Further,
our ERwP requires only 10 epochs to remove the excluded class information from
the model. Since the available limited training data is only 10% of the entire
CUB dataset, therefore, our ERwP approach is approximately 5∗10 = 50× faster
than the FDR method that is trained on the full training data for 50 epochs.

5 Ablation Studies

5.1 Ablation on Our Approach of Identifying the Restricted Class
Relevant Parameters

We perform ablation experiments to verify our approach of identifying the highly
relevant parameters for any restricted class. We perform these experiments on
the CIFAR-100 dataset with the ResNet-56 architecture and report the forgetting
accuracy FAe for the randomly chosen excluded class. Please note that in this case,
only the chosen class of CIFAR-100 is the restricted class and all the remaining
classes constitute the non-excluded classes. In order to show the effectiveness
of our approach, we sort the absolute gradients of the parameters in the model
(obtained through backpropagation for the excluded class augmented images) and
choose a set of high relevance and low relevance parameters. We then prune/zero
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Table 2: Significance of ERwP components

Lne
c Le

c Lkd FAe FPAe CAne

✓ ✗ ✗ 66.50% 68.19% 69.79%
✓ ✓ ✗ 0.00% 24.40% 6.45%
✓ ✓ ✓ 0.00% 47.84% 69.32%

out these parameters and record the forgetting accuracy. Fig. 1 demonstrates
that as we zero out the high relevance parameters, the forgetting accuracy of the
excluded class drops by a huge margin. It also shows that as we zero out the low
relevance parameters, there is only a minor change in the forgetting accuracy of
the excluded class. Therefore, the parameters relevant to the excluded class receive
large gradient updates as compared to the other parameters. This validates our
approach for identifying the high relevant parameters for the restricted classes.

5.2 Significance of the Components of the Proposed ERwP Approach

We perform ablations on the CIFAR-100 dataset using the ResNet-56 model
to study the significance of the Le

c, Lne
c and Lkd components of our proposed

ERwP approach. Table 2 indicates that optimizing the restricted class relevant
parameters using only Lne

c cannot significantly remove the information regarding
the restricted classes from the model. Applying Lne

c along with Le
c significantly

reduces the forgetting accuracy FAe and forgetting prototype accuracy FPAe but
also significantly reduces the constraint accuracy CAne. Finally, applying the Lkd

loss along with Lne
c and Le

c significantly reduces FAe and FPAe while maintaining
the constraint accuracy CAne very close to that of the original model.

5.3 Ablation on the Number of Excluded Classes

We report the experimental results for our approach for different splits of excluded
and remaining classes of the CIFAR-100 dataset in Table 3. We observe that
our ERwP performs well for all the splits for both the ResNet-20 and ResNet-56
architectures.

5.4 Performance of ERwP over Training Epochs

We analyze the change in the performance of the model after every epoch of
our proposed ERwP approach in Fig. 2 for the CIFAR-100 dataset with 20
excluded classes using the ResNet-20 and ResNet-56 architectures. For both
architectures, we observe that as the training progresses, ERwP maintains the
constraint accuracy close to that of the original model and forces the forgetting
accuracy to drop to 0%. ERwP also forces the forgetting prototype accuracy to
keep dropping and makes it similar to the FDR model.
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Table 3: Experimental results on the CIFAR-100 dataset using ResNet-56 for
ERwP with different numbers of excluded classes. # R/E → no. of non-excluded
classes / no. of excluded classes

# R/E Methods ResNet-20 ResNet-56

FAe CAne FAe CAne

60/40
Original 68.18% 67.35% 69.98% 70.11%
ERwP 0.00% 67.03% 0.00% 69.98%

70/30
Original 67.83% 67.61% 69.60% 70.26%
ERwP 0.00% 67.25% 0.00% 69.81%

80/20
Original 70.15% 67.06% 70.80% 69.88%
ERwP 0.00% 66.84% 0.00% 69.32%

90/10
Original 67.90% 67.66% 68.40% 70.24%
ERwP 0.00% 67.26% 0.00% 69.69%

95/5
Original 66.20% 67.76% 67.00% 70.22%
ERwP 0.00% 67.55% 0.00% 69.63%

(a) (b)

Fig. 2: Plots denoting the performance of our proposed ERwP during the op-
timization process for forgetting 20 excluded classes from CIFAR-100 using a)
ResNet-20 and b) ResNet-56 architectures

5.5 Ablation Experiments for β and κ

We perform ablation experiments to identify the most suitable values for the hyper-
parameters β and κ for our proposed ERwP. The ablation results in Tables 4, 5,
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Table 4: Experimental results on the CIFAR-100 dataset with ResNet-20 archi-
tecture for the RCRMR-LD problem with 20 excluded classes using our proposed
ERwP with different values of β

β Methods FAe CAne

- Original 70.15% 67.06%

8 ERwP 0.00% 66.03%
9 ERwP 0.00% 66.23%
10 ERwP 0.00% 66.84%
11 ERwP 0.00% 66.58%
12 ERwP 0.00% 66.15%

Table 5: Experimental results on the CIFAR-100 dataset with ResNet-20 archi-
tecture for the RCRMR-LD problem with 20 excluded classes using our proposed
ERwP with different values of κ

κ Methods FAe CAne

- Original 70.15% 67.06%

1.0 ERwP 0.00% 66.05%
1.5 ERwP 0.00% 66.08%
2.0 ERwP 0.00% 66.84%
2.5 ERwP 0.00% 66.30%
3.0 ERwP 0.00% 66.23%

validate our choice of hyper-parameter values considering the forgetting accuracy
and the constraint accuracy of the resulting model.

5.6 Effect of Different Data Augmentations on the Identification of
Class Relevant Model Parameters

The purpose of applying any data augmentation (not used during training) in
our approach is to study the gradient updates when the model performs back-
propagation over slightly different versions of the training data of a class and
use this information to identify the highly relevant parameters of the model with
respect to that class. We have performed experiments using various data augmen-
tation techniques (grayscale, vertical flip, rotation, random affine augmentations)
and have provided these results in Fig-3. We chose the same restricted class of
CIFAR-100 and use the ResNet-56 network for all the experiments. The results
in Fig. 3 indicate that for all the compared data augmentations approaches,
pruning/zeroing out the high relevance parameters obtained using our approach
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Fig. 3: Ablation to validate our approach for identifying restricted class relevant
model parameters using different augmentation techniques w.r.t. the same ran-
domly chosen restricted class of CIFAR-100. We use the ResNet-56 network for
these experiments. The data augmentation techniques used are (a) grayscale aug-
mentation, (b) vertical flip augmentation, (c) rotation augmentation, (d) random
affine augmentation. In each case, the figure shows the model performance when
the low relevance and high relevance parameters obtained using our approach
are zeroed out

results in a huge drop in the forgetting accuracy of the excluded class. Further,
zeroing out the low relevance parameters has a minor impact on the forgetting
accuracy of the excluded class. Therefore, the data augmentation techniques are
almost equally effective in our approach for finding the relevant parameters with
respect to any restricted class.

5.7 Ablation Experiments on the Restricted Class Relevant
Parameters

We perform ablation experiments with ERwP to check if only 25% and 50%
of the restricted class relevant parameters of each layer identified using our
proposed procedure can be used for ERwP. We run each of these experiments for
the same number of epochs for the CIFAR-100 dataset and ResNet-56 network.
However, we observed that the final FPAe falls from 68.65% to 60.35% and 53.7%,
respectively, for 25% and 50% of restricted class relevant parameters of each layer
as compared to 47.84% when using all the restricted class relevant parameters
per layer identified using our approach. The good performance of our approach
is more evident in light of the performance of the FDR model that achieves a
FPAe accuracy of 45.40%. We provide this result as a reference to demonstrate
that the 47.84% FPAe accuracy is due to the generalization power of the model
and not due to the restricted classes information in the model. This shows that
our approach effectively identifies the class-relevant parameters of the model for
a given class.
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Fig. 4: Class activation maps of ImageNet images from the excluded and non-
excluded classes, for the original ResNet-50 (second row) and ResNet-50 after
applying our proposed ERwP approach (third row). First row depicts the real
images

5.8 Effect of Using the Proposed ERwP Approach When the Entire
Dataset is Available

We perform ablation experiments to demonstrate the performance of our proposed
ERwP approach when the entire training data is available. We perform these
experiments on the CIFAR-100 dataset using ResNet-20 and ResNet-56. We
observe experimentally that for both the ResNet-20 and ResNet-56 experiments
using ERwP, the forgetting accuracy FAe accuracy is 0% and the constraint
accuracy CAne matches that of the original model. Further, the gap between the
forgetting prototype accuracy FPAe of ERwP and the FDR model reduces from
3.86% (for limited data) to 2.79% for ResNet-20. Similarly, the gap reduces from
2.44% (for limited data) to 1.65% for ResNet-56. However, ERwP requires only
2-3 epochs of optimization (∼100-150× faster than the FDR model) for achieving
this performance when trained on the entire dataset. This makes it significantly
faster than any approach that trains on the entire dataset.

5.9 Qualitative Analysis

In order to analyze the effect of removing the excluded class information from
the model using our proposed ERwP approach, we study the class activation
map visualizations [6] of the model before and after applying ERwP. We observe
in Fig. 4 that for the images from the excluded classes, the model’s region
of attention gets scattered after applying ERwP, unlike the images from the
remaining classes.
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