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A Background

In the following sections, we present the background knowledge of personal data
protection problem studied in our paper. We first quote the legislative defini-
tion of “personal data protection” from GDPR [10] and then we discuss the
scope of our problem comparing to general data protection. Finally, some “data
proprietary” problem are addressed in personal data protection.
Definitions of Terms from GDPR. To help readers better understand the
terms we used in the manuscript, we quote several term definitions from [10] as
following:

“Personal data means any information relating to an identified or identifiable
natural person (‘data subject’).”

“Third party means a natural or legal person, public authority, agency or
body other than the data subject, controller, processor and persons who, under
the direct authority of the controller or processor, are authorised to process
personal data.”

“Consent of the data subject means any freely given, specific, informed and
unambiguous indication of the data subject’s wishes by which he or she, by a
statement or by a clear affirmative action, signifies agreement to the processing
of personal data relating to him or her.”

“Personal data breach means a breach of security leading to the accidental
or unlawful destruction, loss, alteration, unauthorised disclosure of, or access to,
personal data transmitted, stored or otherwise processed.”

From above definitions, we show the basic idea of GDPR: a legislation ap-
proach to protect users personal data from being utilized by third-party with-
out users’ consent. More details of GDPR and similar laws can be found on-
line [2, 10, 27]. In our paper, we focus on the technical perspective of personal
data protection by exploiting anti-neuron watermarking to verify unauthorized
usage of user’s personal images.
Personal Data Protection v.s General Data Protection. As our goal is to
protect “Personal Data” (i.e. user data shall be related to identifiable natural
person [10]), we assume each user’s personal images can be distinguished from the
others. This assumption differs “personal data protection” from “general data
protection” problem, where a user’s data are not necessarily to be identified
from other users’. In “general data protection”, our anti-neuron watermarking
would be less applicable. Because neural models learn both watermarked and
unwatermarked data, the inferred signature would be a signature value between
the watermarked and unwatermarked. We leave this challenge for future studies.
“Data proprietary” in Personal Data Protection. One traditional usage
of digital watermarking is to protect data proprietary. To verify proprietary,
the space of watermarking signature needs to enormous such that each signa-
ture (i.e., a hand-writing signature) can be considered as a unique identifier for
user data. However, in our problem settings, our protection focuses on verifying
unauthorized usage (i.e., without “consent”) of user data (images that user al-
ready has “data proprietary” on) instead of verifying data proprietary. Since the
low-dimensional signature is only used to verify unauthorized usage of images,
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our signature space does not need to be as large as “data proprietary” prob-
lem. Readers might be curious what if adversary exploits user’s watermarking
function and reverts a signature on arbitrary images that leads to minimal loss
of arbitrary neural models. Can adversary accuse data privacy breach for these
models? Can adversary claim ownership of these arbitrary data? The answers
are no. According to our previous analysis on signature space, the signature in-
ferred on arbitrary images is highly likely to be no watermarking, a signature
value excluded from valid watermarking signatures. On the other hand, adver-
sary cannot claim data propriety on arbitrary data as they cannot prove that
the data are legally “relating to” adversarial users.

B Preliminary Study

Verification by Recovering Watermarking Pattern. Recent studies show
that DNNs can “memorize” some training examples in various ways [1, 7, 8],
and one can recover certain meaningful low-resolution images from CNNs [8].
Motivated by these studies, we perform a preliminary study on traditional wa-
termarking technique by appending a special pattern (e.g., a sticker) on images.
We train a ResNet50 on 100 randomly selected user samples with a cat pattern
as watermark in Tiny ImageNet. Similar to model inversion [8], we use a learn-
able Gaussian variable on users’ images and minimize the classification loss to
reconstruct watermark pattern with this variable.

As shown in Figure 1, although the reconstructed pattern can achieve 100%
accuracy and minimal classification loss, neural models cannot memorize such
watermark pattern, as no meaningful pattern can be recovered. We believe that
this could be caused by convolution operation where all spatial information of
pixels are being ignored during training. This experiment indicates that it is
difficult for neural learners to memorize such kinds of watermarks, comparing to
the watermarks using color-based transformation.

Fig. 1. Illustration of watermark pattern (left), recovered pattern (middle) and water-
marked images (right). Recovering small visible watermark fails with getting noise.

C Implementation Details

Datasets. We evaluate our anti-neuron watermarking on Cifar [3], Tiny Im-
ageNet [15] and CUB-200-Birds [29]. Cifar are widely adopted datasets with
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50,000 training samples, 10,000 testing samples for 10 and 100 classes, respec-
tively. Tiny ImageNet is a selective subset of ImageNet, containing 100,000 train-
ing samples, 10,000 validation samples and 10,000 testing samples for 200 classes.
Each sample is 3 × 64 × 64. Since testing labels are not publicly available, we
report models’ validation accuracy for models’ performance. CUB-200-Bird is a
high resolution 448× 448 fine-grained dataset containing 200 bird species, with
5994 training samples and 5794 testing samples.
Watermark User Data. Each user image is watermarked by given 3× 3 LCT
function with a signature k followed by a pixel value clipping. A clipping is
needed because LCT could cause overflow on some pixels’ values. The clipping
operation in theory will break the differentiable property of watermarking func-
tion and thus hinder gradient based optimization (e.g., stochastic gradient de-
cent). However, we find empirically that this operation does not affect signature
inference. Hence, we conduct clipping after the LCT in all our experiments.
Data Preparation. For training, each image is first converted from [0, 255] to
[0, 1], and watermarked if it belongs to the user whose images need to be pro-
tected. Then data augmentation and normalized are applied to improve training.
During signature inference, each image is converted from [0, 255] into [0, 1], then
watermarked and normalized. The normalization mean and variance of RGB
channels are (0.5, 0.5, 0.5) and (0.5, 0.5, 0.5) for Cifar, (0.485, 0.456, 0.406) and
(0.229, 0.224, 0.225) for Tiny ImageNet and CUB-Birds, respectively.
Grid Search Settings. We iterate all the possible signatures in our grid search
experiments. The signatures are generated by dividing the whole signature space
into N × 2τ intervals.
Gradient Search Settings. During signature inference, we recover signature
using unwatermarked user data. These user data are combined into one mini-
batch and stochastic gradient decent is used for optimization over signatures. The
initial learning rate is 0.1 and decays 0.1 each 100 epochs, with 300 epochs in
total. To avoid local minima, we select initial values from all possible signatures
and report the signature that lead to minimal loss. Comparing to grid search,
this optimization approach is much more computational expensive and thus our
results will be mainly on grid search for simplicity.
Source Code. Our experimental source code will be publicly available (code
is available in supplementary folder). All our experiments are implemented by
Pytorch. Readers can freely explore our proposed watermarking approach with
the code supplied.

D Additional Results for Effectiveness of Watermarking

Gradient Search Results. In the main manuscript, we present the results
for grid search in various settings. Here, we show the additional gradient search
results on Tiny ImageNet.

1. Different sizes of Watermarked Samples. We first present our result with
different sizes of watermarkred samples in Table 1. Being trained by clas-
sifier, user’s watermarked images achieve lower loss than the clean images.
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And watermarking does not affect classification performance for getting sim-
ilar testing accuracy. These results show that given sufficient data, neural
classifier could memorize watermark signature on user’s data pretty well.

# of
Data

Model
Acc

Watermark
Loss

Clean
Loss

Inferred
signature

10,000 55.6 0.019 0.161 59.0 ✓
1,000 55.8 0.016 0.541 56.4 ✓
100 54.9 0.019 0.668 59.5 ✓
10 54.5 0.017 0.329 48.9 ✓
5 54.6 0.001 0.397 60.99 ✓
1 55.9 0.004 0.006 17.0 ×

Table 1. Inferred signatures for models trained with different sizes of water-
marked data on Tiny ImageNet. The watermark signature is 60 with τ = 15.

2. Different Watermark Signatures. We present the gradient search result for
different signatures on Tiny ImageNet in Table 2. The result shows that the
watermarking for single user does not affect models’ training as models’ ac-
curacy are similar for different signatures. User watermarked images achieve
lower average loss than original images, indicating unauthorized training
models can memorize watermarked images in “some way”. And we achieve
minimal loss nearby watermarking signature, bounded by predefined thresh-
old τ = 15. This experiment shows that different signatures of watermarking
work equivalently.

Watermark
signature

Model
Acc

Watermark
Loss

Clean
Loss

Inferred
signature

60 54.9 0.019 0.668 59.5 ✓
120 55.6 0.070 0.895 120.2 ✓
180 53.8 0.030 1.189 178.8 ✓
240 56.3 0.025 1.118 242.1 ✓
300 55.7 0.016 0.839 306.1 ✓

Table 2. Watermarking for different signatures for ResNet50 on Tiny Ima-
geNet.

3. Different Neural Classifier Architectures. We present the gradient search
result for different architectures on Tiny ImageNet in Table 3. Alexnet [17],
VGG [25], ResNet [12], Wide ResNet [34] and DenseNet [13] are evaluated
in this experiment. The watermark signature is 60 and τ = 15.

4. Different Learning Capacity of Models. We present the gradient search re-
sult for different learning capacity of models on Tiny ImageNet in Table 4.



5

Architecture
Model
Acc

Watermark
Loss

Clean
Loss

Inferred
signature

Alex 38.0 2.189 3.175 56.9✓
VGG 57.3 0.640 1.151 52.8✓
Res 54.9 0.019 0.668 59.5✓

Wide Res 56.6 0.005 0.738 58.4✓
Dense 61.5 0.114 0.838 58.8✓

Table 3. Watermarking for different architectures on Tiny ImageNet.

ResNet [12] family is evaluated in this experiment. The watermark signature
is 60 and τ = 15.

Architecture
Model
Acc

Watermark
Loss

Clean
Loss

Inferred
signature

ResNet18 52.9 0.036 0.801 55.2 ✓
ResNet34 53.6 0.007 0.679 55.8 ✓
ResNet50 54.9 0.019 0.668 59.5 ✓
ResNet101 54.6 0.004 0.736 58.3 ✓
ResNet152 56.5 0.007 0.814 60.4 ✓

Table 4. Watermarking for different learning capacities on Tiny ImageNet.

E Additional Results for Watermarking Properties
Analysis

In this section, we provide more details of our experiments on analyzing the
properties of watermarking.
Resilience to Data Augmentation. Here, we present our settings to evaluate
if our proposed watermarking method could survive under common data aug-
mentations used in neural models’ training. The following data augmentations
are evaluated:

1. Random Crop [17]. Random crop is a widely used data augmentation for
most neural models’ training [12, 17, 25, 32]. It randomly crops images into
smaller resolution to reduce models’ overfitting on spatial location. For Tiny
ImageNet, images are randomly cropped into 64 × 64 with a padding of 8.
For Cifar, images are randomly cropped into 32 × 32 with a padding of 4.
All our training includes random crop for best performance.

2. Horizontal Flipping [17]. This is also a widely used data augmentation for
image classification. We include horizontal flipping for all our experiments.
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3. Cut Out [5]. Cutout removes random region of size M ×M from images at
each training iteration. We set the size M = 8 for our experiments.

4. Label Smoothing [28]. Label smoothing is also a widely used data augmen-
tation in many tasks [20]. It reduces the probability of ground truth label
(e.g., 100% cat, 0% dog, 0% duck) by a smoothing parameter α and assigns
probability uniformly to other classes (90% cat, 5% dog, 5% duck). The
smoothing parameter α is set to be 0.1 in our experiments.

5. Gaussian Noise [4]. This technique simply adds noise to the input from a
Gaussian distribution N (0, σ2) to increase models’ robustness. The σ2 is set
to be 0.1 in our experiments.

6. Adversarial Training [19]. Neural Networks are well known for their vulner-
ability to adversarial attacks. [11, 19], and adversarial training are believed
to reduce overfitting [19] and mitigate privacy leakage [14, 21]. We address
this by training with adversarial samples generated from FGSM attack [11].
The epsilon is set to be 0.01.

7. Differential Privacy [6]. Differential privacy is a wide adopted privacy pre-
serving technique in many real-world applications. By adding noise to the
query results, user’s sensitive information cannot be inferred via querying.
In our implementation, we add random noise samples from Gaussian distri-
bution N (0, σ2) to the output confidence. The σ2 is set to be 0.1.

8. Color Jitter [17]. Color jitter randomly adjusts brightness, contrast, satura-
tion and hue of input images. We apply high intensity color augmentation
in our experiments. For each color properties, the value of adjustment is
randomly sampled from [-288, 288], covering 80% of the range of transfor-
mation. The same conclusion can be made by comparing Table 2 with Table
5. We further explore on CUB-200-birds with a stronger data augmentation.
Watermark signature would fail to be inferred in this case. This observation
implies that if models are trained heavily with similar data augmentations
as watermarking, the signature inference could be confused by nearby sig-
natures and thus fail to recover the watermarking signatures.

Watermark
signature

Model
Acc

Watermark
Loss

Clean
Loss

Inferred
signature

60 52.5 0.042 0.054 64.8 ✓
120 52.5 0.102 0.244 108.3 ✓
180 53.0 0.052 0.081 178.8 ✓
240 53.0 0.113 0.132 254.4 ✓
300 51.7 0.125 0.161 291.3 ✓

Table 5. Watermarking for model trained with color jitter augmentation for
ResNet50 on Tiny ImageNet. Loss difference between clean and watermarked
samples are smaller comparing with Table 2.
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In Table 6, watermark signatures can be inferred correctly from gradient
search for the aforementioned data augmentations. This shows empirically that
LCT is an effective watermarking approach because it is resilient to common
data augmentations in neural networks’ training.

Augmentation 60 120 180 240 300

Cut Out 57.5 122.1 178.6 240.3 301.8
Lable Smoothing 59.6 116.9 181.4 239.3 299.9
Gaussian Noise 58.3 107.8 187.1 237.2 309.9
Adv Training 57.5 118.8 183.5 242.9 298.6

Differential Privacy 56.0 117.5 182.8 240.6 295.9
Color Jitter 64.8 108.3 178.8 254.4 291.3

Table 6. Inferred signatures for models trained with different data augmen-
tations for ResNet50 on Tiny ImageNet.

Less Noticeable Watermarking. In the previous sections, we show that LCT-
based watermarking is effective against unauthorized neural learners, but may
change the color property significantly in visualization, as illustrated in Figure 2.
One may argue that such a kind of watermarking could be too visually obvious
to be recognized by unauthorized neural learners. However, given data samples,
by selecting proper watermarking signature, the watermarking could be difficult
to be distinguished from stylish transformation or even unnoticeable to human
being.

Fig. 2. Selective clean (top), watermarked (middle), reconstructed (bottom) samples’
comparison for hue-based watermarking applied on the whole images.

For example, nowadays users would often apply image filters to stylize images
before publishing on social media, where filters are quite natural such as tuning
the color of tree leaves from green to yellow, changing the color of sky from
light blue to dark blue. The parameters of these images’ filters could be used



8

as signature for watermarking. As stylized filters are widely used, it would be
difficult for neural learners to distinguish whether it is watermarking or users’
preference.

(a) Clean.

(b) Watermarked (0.1) and Reconstructed (0.12).

(c) Watermarked (0.3) and Reconstructed (0.28).

(d) Watermarked (0.5) and Reconstructed (0.44).

Fig. 3. Selective samples’ comparison for color-based watermarking for partial pixels
on blue color channel.

Color-based transformation can be less noticeable when it is only applied
on selective pixels and color channels. In particular, by following [33], we first
generate a random binary string w with a fixed length T , and then generate
pseudo-random pixels’ positions as ρt = (it, jt) for each element wt, (1 ≤ t ≤ T ).
Finally we change blue color channel for these pixels as:

Bρt ← (2wt − 1)αLρt , (1)

where α is the hyper-parameter of watermarking intensity and Lρt
is luminance

of pixel calculated by Lρt
= 0.299Rρt

+ 0.587Gρt
+ 0.114Bρt

.
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Different from [33], we use α as the watermark key and pass the pseudo-
random pixels’ locations and binary string w to the verifier for key inference.
Empirically, this kind of watermarking can be memorized by neural learners but
less noticeable to human. We present visual comparison of samples in Figure 3
with different value of α. In summary, color-based watermarking can be both
effective and unnoticeable with carefully selected watermarking approach and
watermark keys w.r.t users’ images.

In our paper, we mainly explore LCT as an effective way for anti-neuron
watermarking. And we also show recovering watermark pattern fails to work
in PIP while other geometrical watermarking can be applicable. There are cer-
tainly other watermarking functions that can verify unauthorized neural model
training.

F More Discussions on User-specific Watermarking

As we show in previous section, signatures watermarked by user-specific LCTs
would be better memorized among multiple users than those watermarked by a
single LCT. This observation, on one hand, implies that selecting an arbitrary
LCT for watermarking would be a good practice. It also explains why the LCT
watermarking could be resilient to Color jitter. As the color transformations are
well-defined and constant matrices (the matrices are fixed, the adjustment could
be any value), randomly chosen users’ watermarking are highly unlikely to be
the same as Color jitter and would be easier to survive in data augmentation. On
the other hand, it is very unlikely to infer user signatures without knowing the
watermarking function as inferring from arbitrary LCTs have similar matching
rate as random guessing, which makes it difficult for attackers to find out the
users’ signatures without knowing their watermarking functions in advance.

G Comparison with Related Methods

Comparing to Membership Inference Attacks. As membership inference
attacks (MIAs) determine membership of given data, it is reasonable to consider
such methods in personal data protection. However, there are three restrictions
preventing MIAs from being applied in real PIP scenarios.

(i) The first restriction is MIAs require prior knowledge of training data,
which would be difficult to obtain as a common user. For example, user needs
auxiliary data which has the same data distribution and similar data size as
training data so that the well-trained shadow models could have similar perfor-
mance as adversary models [24]. Or users need to know some samples that are
in adversary model’s training data [31].

(ii) If users exploit their own data and train shadow models to perform MIAs,
the success accuracy would still be low. This is because adversary could train a
much better models by using much more data than a single user. In this case,
the training loss of adversary model would be much less than the users shadow
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models. As we discussed in the main draft, such performance difference would
lead to poor classification accuracy in membership inference.

On the other hand, as neural learner collects data from many others, there
are chances that users’ data distribution are slightly different (i.e., users wa-
termarking their data in different ways or applying different filters). Under this
circumstance, MIAs would possibly perform worse as a single threshold might
not work well for heterogeneous users data.

(iii) Last but not the least, even if we assume the verifier obtains such knowl-
edge, the inference results would be unconvincing for an arbitration. As MIAs
only produce binary outputs (i.e., True of False), the probability of a correct
guess is already 50%. Further, MIAs determine membership by considering data
in training must have a small loss. But a small loss of user data can not guaran-
tee user data were used for training. Such a result could possibly be caused by
learning similar data rather than the user’s.

In summary, MIAs would be less practical than watermarking in personal
data protection.

Early studies on MIAs consider watermarking as a special case. In the study [31]
on membership inference, they discuss the membership advantage [30] is not nec-
essary if there exists features as a prior knowledge that can be used to distinguish
data, (e.g. unique id for each image). This follows same idea of watermarking and
verification discussed in the paper. However, [31]’s study does not study what
watermarking technique can be used to against neural modeling training. They
assume the all users can substitute their original data with an identifier via an
arbitrary function G [9] and this substitution would not interfere the embedding
identifiers. This might work if neural networks can perfectly memorize every
detail of training data, including the identifier. However, as shown in our exper-
iments, this is not true. Different users with the same watermarking function
would interfere each other heavily, as neural models can learn the data augmen-
tation during training [35]. One contribution of this paper is to show that LCT
is an effective anti-neuron watermarking method against neural model training
in various realistic settings.

To justify the above discussions, we first propose a new evaluation metric for
protection, which quantifies both inference accuracy and signature space, as dis-
cussed in the main manuscript. Then we conduct experiments on two PIP cases
where users train their own shadow models and different users exploit different
watermarking. To perform MIAs, we assume the verifier obtains the necessary
knowledge of training distribution, and compare our watermarking method with
two state-of-art MIAs: MIA-std [31] and MIA-pow [23]. The first MIA exploits
few samples known from model’s training and use the average training loss as
a threshold to determine the membership. If the loss of given testing sample is
smaller than the threshold, the sample would be used for training. The second
method requires extra samples known from the held-out set and find the best
threshold for both training and held-out samples.

For the experiment, we follow similar settings in [16] for these two attacks. To
compare with watermarking fairly, we conduct MIA on average loss of user data,
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not data per se, which would increase accuracy of MIAs. In the case when user
exploit their own data to perform MIAs, we assume 10 users and each user utilize
his/her data to train shadow models and use the knowledge of shadow models
to further perform MIAs, respectively; We use MIA-std citeyeom2018privacy as
the baseline method and obtain the decision threshold using average training
loss from user’s shadow models. In the case when users’ data distribution are
slight different, we randomly split Tiny ImageNet into 1,000 users for training
set and 100 users for validation set, with 100 data samples for each user. For
MIA-std [31], we randomly select 5 users from training and calculate the average
loss as the membership threshold. For MIA-pow [23], we randomly select 5 users
from training and 5 user from validation to search for the best threshold. Then we
test the inference accuracy on 100 user data samples, with 50 randomly chosen
from training and 50 randomly chosen on validation. Note that the testing users
would be exclusive from users used for finding threshold.

From Table 7, we show the matching accuracy for MIAs and our method
on these testing users. It can be observed that the performance of MIAs will
first decrease and then increase as ratio grows. Specifically, when fewer user
data are watermarked, the MIAs’ threshold would be mainly determined by the
unwatermarked users data. Meanwhile, as some user data exploit watermarking,
the loss of watermarked data would be lifted, as illustrated in Figure 4, and even
if the watermarked samples were used in training, the MIAs would misclassify
these samples. The situation would be worst when there are similar amount of
watermarking data and unwatermarking data. Such a result show that MIAs
would be unstable when user data are heterogeneous.

Ratio 0% 20% 40% 60% 80% 100%

MIA-std 77.8 74.6 67.3 72.2 69.5 79.0
MIA-pow 92.7 84.8 77.6 80.3 76.5 94.0

ANW - 96.0 95.2 92.6 86.5 82.0

Table 7. The matching accuracy between membership inference attacks
and anti-neuron watermarking. Different ratio of users exploit different LCT
for their data. In MIAs, a match would be calculated by binary inference result,
but in ANW, a match would imply the correct signature, which would be more
difficult because there are 12 signature values in this experiment.

Comparing to Dataset Tracing. Recent studies [18, 22, 36] on dataset pro-
tection investigate watermarking against neural training and it is tempting to
apply these methods in personal data protection. However, as we discussed in the
main manuscript, dataset tracing [18, 22, 36] requires full knowledge of training
data, so that they can generate “watermarked data” by exploiting pretrained
classifier on the dataset as adversarial training [19]. However, from users’ per-
spective, such prior knowledge would not be sufficient because it is impossible
for a common user to know how other data will be collected and what tasks will
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Fig. 4. Illustration of why MIAs would decrease performance when partial
users exploit watermarking. As watermarking function lifts loss of user data, the
original MIA threshold calculated by unwatermarked data would misclassify the mem-
bership of watermarked data and thus degrades performance. The experiment result
for memorization in the main draft verifies the above idea.

be performed. As a result, techniques like dataset tracing [18,22,36] can not be
directly applied to the PIP scenario.

As dataset tracing [22] can be applied on partial data, we compare our
method with dataset tracing [22] and verify whether both methods can work well
with very limited watermarking data, which is common in the PIP problem. To
make dataset tracing work, we pre-train a ResNet50 model on Tiny ImageNet
and adopt the same setting as [22] to generate “radioactive data”. As shown
in the main manuscript, with 0.1% data being watermarked, our LCT method
is more effective as we observe that watermarking signature can be memorized
well as expected.

H Memorization Analysis of Watermarking

When Signature is being Memorized during Neural Model Training?
One interesting problem for watermarking is when a signature is memorized
by neural models. From previous studies on MIAs [16, 24, 26, 31], user privacy
information is being leak when model’s overfitting. As a result, it is likely for
models to memorize watermarking signatures when models over-learn the wa-
termarked data [26]. To explore the answer of this question, we infer signatures
by grid search for different checkpoints of model during training. In Figure 5,
we can observe the inferred signature reaches 0 at early stage of training and
gradually reach 60 with more learning epochs. This result illustrates that the
watermarking signature could be memorized before the end of training. This em-
pirical results can also explain why data augmentation (watermarking) can be
learned by neural models during training, according to the study [35] for neural
generalization.
Watermarking Increase Memorization of User Data. In the main draft,
we mention how to use “memorization value estimate” [7] to study how wa-
termarking improve memorization of user data. As user data is watermarked,
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Fig. 5. The watermarking signature can be memorized before the end of training. The
red point indicates inferred signature that achieves minimal loss over other signatures.

the probability density of user data would be lifted into low density region and
thus being easier memorized by neural learners. During training process, the
watermarking signature would be better memorized along with user data. Ac-
cording to the study [7] on memorization, for training algorithm A on a dataset
S = ((x1, y1), ..., (xn, yn)), the amount of label memorization by A on example
(xi, yi) ∈ S is defined as,

mem(A, S, i) := Pr
h←A(S)

[h(xi) = yi]− Pr
h←A(S\i)

[h(xi) = yi]. (2)

To estimate above memorization value on sample index at i, [7] firstly selects
random subsets for S, with some subsets including sample i and some exclude
sample i. Then, K models are being trained using these subsets, grouped into 2,
one includes sample i and the other excludes sample i. The memorization value
estimate (MAE) is finally calculate by averaging the difference of Pr between
these two groups of models. In our experiments, we split the training set of Tiny
ImageNet into 1,000 users and choose one split as user data (we calculate MAE
on a collection user data instead of one sample). Then we randomly use 70% of
users data to construct 20 subsets. 20 models are being trained correspondingly
to calculate the final MAE. We fix the indices for this experiments and train
20 models with and without watermarking on user data. From the results we
show in the main manuscript, the MAE of user data increase after watermarking,
indicating that watermarking improves model memorization ability on the given
user data.
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