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1 Network Architecture

We present the architecture details of the 3DFCN backbone network (ϕE and
ϕD), Generator Network (G), and Discriminator Network (D) in Table 4. Note
that we downsample the head motion flow both spatially and temporally, re-
sulting into a tensor with size 4 × 7 × 7 × 2. As shown in ID 10 from Table 4,
we directly concatenate the generated head motion flow map with the encoded
video features and feed the concatenated tensors into the decoder network. Other
work [6] proposed to combine optical flow features, learned by a convolutional
operation, with video features for future segmentation. However, our empirical
finding is that a convolutional flow feature extractor is not necessary, as the
decoder can effectively understand the motion pattern incorporated in the low-
resolution head motion flow map.

2 Results Using Semantic Masks as Inputs

As discussed in Sec.4.3 from our main paper, the original ConvLSTM [10] and
FlowTrans [6] take accurate semantic segmentation masks, from a fine-tuned
semantic segmentation model, as inputs. However, the semantic segmentation
annotation is not available on the existing egocentric video datasets [7,3] to fine-
tune a segmentation model. And the pre-trained Mask-RCNN model obtains
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Table 1: Results using semantic mask as inputs. Our method outperforms the
second-best results (across all methods) by 1.3% on EPIC-Kitchens in average
F1 score. The best results are highlighted with boldface, and the second-best
results are underlined.

Method
EPIC-Kitchens (Precision/ Recall/ F1 Score)

short-term middle-term long-term

S2S 24.85/ 56.12/ 34.45 27.59/ 54.69/ 36.68 26.86/ 52.59/ 35.55
ConvLSTM 28.24/ 45.48/ 34.84 30.20/ 49.00/ 37.37 29.45/ 47.70/ 36.42
FlowTrans 27.97/ 47.82/ 35.30 29.58/ 52.07/ 37.73 28.95/ 49.89/ 36.64

Ours 29.09/ 47.86/ 36.19 33.14/ 47.50/ 39.04 32.68/ 45.05/ 37.88

sub-optimal results on egocentric video datasets [4]. In this section, we present
the results of ConvLSTM, FlowTrans, S2S 1, as well as our method using the
semantic segmentation from [4] as inputs. The experimental results are sum-
marized in Table 1. Notably, using the semantic segmentation results from a
pre-trained model decreases the model performance on short-term and middle-
term hand mask anticipation, yet slightly improves the long-term future hand
segmentation results for all methods. More importantly, when using the semantic
masks as inputs, our model outperforms the second-best results (across all meth-
ods) by 0.9%/1.3%/1.2% in F1 Score for short/middle/long-term future hand
segmentation. These results further demonstrate the robustness of our method.
It is worth noting that another relevant work from [2] also addresses the future
segmentation problem, and can adopt either raw video frames or semantic masks
as inputs. However, the official implementation of [2] is under construction. And
we found the training of our implementation of [2] to be unstable under the ego-
centric setting, probably because that the drastic change of scene context incurs
additional barriers for the distillation model to generalize.

3 Results Using I3D-Res101 Backbone

We further show our method can generalize to different backbone encoder net-
works. In Table 2, we report the future hand segmentation results of both
our method and 3DFCN baseline using I3DRes50 and I3DRes101 backbone.
As discussed in the main paper, the performance improvement of our method
(EgoGAN-I3DRes50 vs 3DFCN-I3DRes50) is larger than adopting a denser
backbone model (3DFCN-I3DRes101 vs 3DFCN-Res50). Moreover, the EgoGAN
model with I3D-Res101 improves 3DFCN-I3DRes101 by +0.1%/0.1%/0.3% on
EGTEA and +0.5%/0.4%/0.7% on EPIC-Kitchens. These results further show
the robustness of our method. (Note that the performance improvement on
EGTEA is relatively small with I3DRes101 backbone, due to the limited training
data and dense backbone encoder.)

1 X2X model described in our main paper was denoted as S2S in [9], when using the
semantic mask as inputs
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Table 2: Experimental results using different backbone networks. Our model
achieves consistent performance improvement when using different backbone net-
works. (See more discussion in Sec. 4)

(a) Experimental Results on EPIC-Kitchens Dataset

Method Backbone
Epic-Kitchens (Precision/ Recall/ F1 Score)

short-term middle-term long-term

3DFCN
I3DRes50 69.51/ 70.81/ 70.15 42.51/ 51.66/ 46.64 29.88/ 47.46/ 36.67
I3DRes101 69.48/ 70.96/ 70.21 42.32/ 52.80/ 46.98 29.97/ 48.37/ 37.01

EgoGAN
I3DRes50 70.89/ 71.24/ 71.07 43.79/ 53.23/ 48.05 31.39/ 48.57/ 38.14
I3DRes101 69.17/ 74.05/ 71.53 44.09/ 53.79/ 48.46 30.79/ 52.60/ 38.85

(b) Experimental Results on EGTEA Gaze+ Dataset

Method Backbone
EGTEA (Precision/ Recall/ F1 Score)

short-term middle-term long-term

3DFCN
I3DRes50 43.62/ 61.69/ 51.11 40.25/ 58.93/ 47.83 37.83/ 58.32/ 45.89
I3DRes101 44.66/ 61.81/ 51.85 40.49/ 59.72/ 48.26 35.70/ 66.18/ 46.38

EgoGAN
I3DRes50 44.91/ 61.48/ 51.91 41.10/ 59.90/ 48.75 38.16/ 59.88/ 46.61
I3DRes101 45.69/ 60.42/ 52.03 39.40/ 64.27/ 48.85 36.92/ 64.43/ 46.94

Table 3: Experimental results on generated future head motion. We calculate the
endpoint error (EPE) between the generated head motion and the ground truth
head motion. Our method outperforms HeadReg on the EPIC-Kitchens dataset
and works on-par with HeadReg on the EGTEA dataset.

Method Epic-Kitchens (EPE ↓) EGTEA (EPE ↓)
HeadReg 10.39 5.27

EgoGAN(Ours) 7.08 5.16

4 Results of Generated Future Head Motion

Our model also has the capability of generating future head motions. In Table 3,
we compare our methods with HeadReg – the only baseline model that predicts
future head motion. We use the standard endpoint error (EPE) as evaluation
metric. On the EPIC-Kitchens dataset, our method outperforms HeadReg by
a significant margin. The performance improvement of our method is smaller
on the EGTEA dataset, due to fewer available training samples. These results
suggest that the GAN from our model can generates more realistic future head
motion.

5 Zero-Motion Baseline

We conduct additional experiments to show our method does not simply generate
a trivial solution that predicts an “average” hand mask shared across all time
steps. Specifically, we consider a zero-motion baseline model that has the same
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model design as our method, yet ignores the hand motion. Therefore, the future
hand segmentation results ht+∆2 and ht+∆3 are identical to ht+∆1 . This baseline
model achieves a F1 score of 46.14% and 34.30% for middle-term and long-term
future hand segmentation on EPIC-Kitchens, which lags behind our full model
(1.9%/3.8% ↓). These results further demonstrate that our method is capable of
capturing meaningful hand movements.

6 Pseudo Ground Truth of Hand Masks

Though the domain adaption method from [1] can generate high quality hand
segmentation results, they method still yields to the challenging factor of ego-
centric video, and thus may produce sub-optimal hand segmentation results.
Therefore our quantitative experiments cannot reflect the true performance im-
provement of our method. In Fig. 1, we visualize, hand masks ground truth
and prediction results from both our method and FlowTrans. Even though our
method demonstrate stronger generalizing capability and predicts more detailed
hand shapes, our model has lower F1 score than FlowTrans due to the inaccurate
hand masks ground truth.

7 Additional Visualizations

We provide additional visualizations of our results in Fig. 2. Our method can
effectively predict future hand masks. However, the model performance drops
as the anticipation time increases. This is the same pitfall shared by previous
works [8] on visual anticipation. Note that we also provide the video demos of
our method.

8 Code and Licenses

The usage of the EPIC-Kitchens Dataset is under the Attribution-NonCommercial
4.0 International License2. EGTEA Gaze+ dataset did not provide a license
but can be used for research purposes. Our implementation is built on top
of [5], which is under the Apache License3. Our code will be available at https:
//github.com/VJWQ/EgoGAN.git.

2 https://creativecommons.org/licenses/by-nc/4.0/
3 https://github.com/facebookresearch/SlowFast/blob/main/LICENSE

https://github.com/VJWQ/EgoGAN.git
https://github.com/VJWQ/EgoGAN.git
https://creativecommons.org/licenses/by-nc/4.0/
https://github.com/facebookresearch/SlowFast/blob/main/LICENSE
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Fig. 1: Visualization of hand mask ground truth, and prediction results from our
model and FlowTrans. Because of the sub-optimal ground truth, the quantitative
results can not demonstrate the true performance improvement of our approach.
(See more discussion in Sec. 6)
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Fig. 2: Additional Visualization of predicted future hand masks. From left to right,
each column presents the RGB frame at time step t and the short-term (t+∆1),
middle-term (t+∆2), and long-term(t+∆3) future hand segmentation results.
The first four rows are our results on the EPIC-Kitchens dataset, and the rest
three rows are our results on the EGTEA dataset.
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Table 4: Network architecture of our EgoGAN. We omit the residual connection
in backbone I3D-Res50 for simplification. And we present the tensor dimension
during training time.

ID Branch Type
Kernel Size

THW,(C)

Stride

THW

Output Size

THWC
Comments

1

Encoder

Input Size:

8× 224× 224× 3

Conv3D 5× 7× 7, 64 1× 2× 2 8× 112× 112× 64

2 MaxPool1 1× 3× 3 1× 2× 2 8× 56× 56× 64 Skip connect with 24

3
Layer1

Bottleneck 0-2

3× 1× 1, 64

1× 3× 3, 64

1× 1× 1, 256

(×3)

1× 1× 1

1× 1× 1

1× 1× 1

(×3) 8× 56× 56× 256

4 MaxPool2 2× 1× 1 2× 1× 1 4× 56× 56× 256 Skip connect with 23

5
Layer2

Bottleneck 0

3× 1× 1, 128

1× 3× 3, 128

1× 1× 1, 512

1× 1× 1

1× 2× 2

1× 1× 1

6
Layer2

Bottleneck 1-3

3× 1× 1, 128

1× 3× 3, 128

1× 1× 1, 512

(×3)

1× 1× 1

1× 2× 2

1× 1× 1

(×3) 4× 28× 28× 512 Skip connect with 22

7
Layer3

Bottleneck 0

3× 1× 1, 256

1× 3× 3, 256

1× 1× 1, 1024

1× 1× 1

1× 2× 2

1× 1× 1

8
Layer3

Bottleneck 1-5

3× 1× 1, 256

1× 3× 3, 256

1× 1× 1, 1024

(×5)

1× 1× 1

1× 1× 1

1× 1× 1

(×5)4× 14× 14× 1024 Skip connect with 21

9
Layer4

Bottleneck 0

3× 1× 1, 128

1× 3× 3, 128

1× 1× 1, 512

1× 1× 1

1× 2× 2

1× 1× 1

10
Layer4

Bottleneck 1-2

3× 1× 1, 128

1× 3× 3, 128

1× 1× 1, 512

(×2)

1× 1× 1

1× 2× 2

1× 1× 1

(×2) 4× 7× 7× 2048
Concat with generated

future head motion

11
Generator

Network (G)

Input Size:

4× 7× 7× 2048

Conv3d 1 1× 1× 1, 2048 1× 1× 1 4× 7× 7× 1024

12 Conv3d 2 1× 1× 1, 1024 1× 1× 1 4× 7× 7× 512

13 Conv3d 3 1× 1× 1, 512 1× 1× 1 4× 7× 7× 2

14 Tanh 4× 7× 7× 2
Input for Decoder

& Discriminator

15

Discriminator

Network (D)

Input Size:

4× 7× 7× 2

Conv3d 1 1× 3× 3, 2 1× 1× 1 4× 5× 5× 32

16 Conv3d 2 1× 3× 3, 32 1× 1× 1 4× 3× 3× 64

17 Conv3d 3 1× 3× 3, 64 1× 1× 1 2× 1× 1× 128

18 Adaptive Avg Pooling 1× 1× 1× 128

19 Linear 1

20 Sigmoid 1 BCE loss

21

Decoder

Input Size:

4× 7× 7× 2050

ConvTranspose3d 1 1× 3× 3, 2050 1× 2× 2 4× 14× 14× 1024 Skip connect with 8

22 ConvTranspose3d 2 1× 3× 3, 1024 1× 2× 2 4× 28× 28× 512 Skip connect with 6

23 ConvTranspose3d 3 1× 3× 3, 512 1× 2× 2 4× 56× 56× 256 Skip connect with 4

24 ConvTranspose3d 4 3× 3× 3, 256 1× 1× 1 8× 56× 56× 64 Skip connect with 2

25 ConvTranspose3d 5 1× 5× 5, 64 1× 4× 4 8× 224× 224× 64

26 Conv3d 1 4× 1× 1, 64 1× 1× 1 5× 224× 224× 32

27 Conv3d 2 3× 1× 1, 32 1× 1× 1 3× 224× 224× 16

28
Conv3d 3

(Classifier)
1× 1× 1, 16 1× 1× 1 3× 224× 224× 1 BCE loss
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