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Abstract. Due to the lack of space in the main paper, we provide more
details of the proposed method and experimental results in the supple-
mentary material. Sec.1 adds the related works for image reconstruction
using the event camera and cross-modal attention. Sec.2 provides the
detailed network architectures of the proposed RNN-cell for the event
feature encoding. Lastly, Sec.3 presents the details of data collection and
the experiments on dataset generations. Finally, Sec.4 presents additional
experimental results and details.

1 Additional related work

Deep learning for Event-to-Image and Video Reconstruction. The other
line of research directly reconstructs sharp images and video from event data
via adversarial learning [22, 12, 29], RNNs [18, 31, 20], and self-supervised learn-
ing [16]. As the event cameras, e.g ., DAVIS 240C [1], are in a low-resolution,
some attempts have tried to reconstruct high-resolution images via supervised
[11] and unsupervised learning [25]. Moreover, some works [24, 23] have demon-
strated that image reconstruction can be used to help event-based visual per-
ception tasks in training. However, reconstructing video from the events is still
a highly ill-posed problem due to inherently unstable contrast threshold and
sensor noise.

Cross-Modal Attention Attention mechanisms can adaptively transform a
network’s parameters according to inputs. Thus, it boosts representative features
while suppressing uninformative features in various manners, such as channel
attention, spatial attention, and temporal attention [6, 21, 3, 17, 26, 9]. Recently,
a growing body of research has been delving into dynamic feature modulation
considering two modality inputs. For event and frame modalities, Gehrig et al . [5]
introduce a recurrent feature modulation mechanism to fuse the event and RGB
sensor data.
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Fig. 1: The proposed RNN-cell for recurrent encoding of the events

Table 1: Dataset comparison between Blur-DVS and our datasets
Camera Resolution Color # sharp images # Scenes

Blur-DVS [7, 10, 19] DAVIS-240C 240× 180 No 15246 -
Our datasets Color DAVIS-346 346× 260 Yes 53601 59

2 Network Architecture

2.1 Recurrent encoding for the embedded events

To apply the proposed RNN-cell, we first divided B temporal bins of the voxel
grid of the events into N temporal units as mentioned in the main paper. For
each temporal-wise divided unit event {En

t } ∈ R2×H×W with temporal index
n ∈ {1, ..., N}, we apply the proposed RNN cell as illustrated Fig.1. We first
extract the feature of the unit event utilizing the first encoding block f1 as
follows:

F(En
t )s=0 = f1(E

n
t ) (1)

We then generate a feature map of the next scale.

F(En
t )s=1 = f2(Concat(F(En

t )s=0, ht−1)) (2)

where Concat denotes channel-wise concatenation operation; f2 refers to the
second CNN block of the RNN cell, and ht−1 refers to the previously generated
hidden state. With these local event feature F(En

t )s=1, we recursively update
hidden state ht as follows:

ht = fh(F(En
t )s=1) (3)

where fh denotes the CNNs block for extracting the hidden state. We then
further process F(En

t )s=1 using the last CNNs block f3 represented as:

F(En
t )s=2 = f3(F(En

t )s=1) (4)

In this way, we generate the output hierarchical feature maps {F(E1
t )s, ...,F(EN

t )s}
for the current part(s ∈ {0, 1, 2}). All the generated feature maps are concate-
nated with the feature map of events for the past part.
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Fig. 2: DAVIS-346 Color camera used for dataset collection.

3 Real-world event datasets

3.1 Dataset collection details and comparisons

As mentioned in the main paper, there are no publicly available large-scale
datasets for evaluating event-guided motion deblurring, including real-world
events. The previous event-guided motion deblurring methods used the dataset
called named as Blur-DVS [7, 10, 19], which is not publicly available. For this
reason, we collected a new dataset using the Color-DAVIS 346 camera that pro-
vides RGB images and spatially aligned stream of events as shown in Fig.2.
Since the Color-DAVIS 346 camera has a low frame rate (maximum ∼ 40fps),
we captured static scenes when collecting sharp images. We minimize motion
blur by moving the camera slowly. Compared to Blur-DVS [7, 10, 19], we col-
lected more sharp images and diverse scenes, as shown in Table.1. In addition,
we obtained relatively higher resolution events and images pair since the Color-
DAVIS 346 camera can shoot events and frames with a higher resolution than the
DAVIS-240C. Finally, our dataset contains RGB images, whereas Blur-DVS [7,
10, 19] only provides intensity images. Therefore, we can evaluate richer texture
information of the scene details using RGB images.

Table 2: The evaluation results of our model on the GoPro dataset when tested
in different configurations from the training set using three different training
datasets. We trained our network for the number of iterations the same as used
in the main paper.

Training datasets
Unseen interval

7-5 9-3 11-1 Avg.
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Known exposure time 23.26 0.7354 25.03 0.7881 31.26 0.9263 26.52 0.8166
Unknown exposure time 37.39 0.9700 34.62 0.9541 34.94 0.9584 35.65 0.9608

Unknown exposure time + random noise 37.07 0.9686 36.84 0.9669 36.41 0.9642 36.77 0.9666
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3.2 The experiments on dataset generations

For performing event-guided motion deblurring for unknown exposure time videos,
it is crucial to simulate various unknown video frame acquisition processes dur-
ing the training phase(arbitrary exposure and readout time). The reason is that
there can be arbitrary different ratios for exposure and readout interval in real
situations. Therefore, our ETES module needs to learn select event features cor-
responding to unknown exposure time at various arbitrary interval ratios. To
this end, we add random noise to readout-interval for the generalization ability.
To demonstrate the effectiveness of our proposed dataset generation method, we
trained our model with three different training datasets and tested our model
not seen in the training set. First, we train our model with the assumption of the
previous event-guided motion deblurring methods(shutter period and exposure
time are the same - known exposure assumption). In that case, the performance
is dramatically degraded to unseen combination of exposure and read-out time,
as shown in the first row of Table.2. Next, we generated a training sets with
m+n = 16, set the number of video frames of the exposure phasem={9,11,13,15}
as in the main paper. We then train our network without adding random noise to
evaluate the performance. We observe the deblurring performance is somewhat
improved in the unseen interval, but the still degraded performance(the 2nd row
of Table.2). Lastly, we observe a significant performance improvement to the
unseen interval by adding random noise as shown in the 3rd row of Table.2.
This experiment demonstrated that we could improve the generalization ability
in the unseen exposure-readout intervals by adding random noise to the readout
interval.

4 Additional experimental results and details

4.1 Video results

Video results on GoPro-15fps datasets with the unknown and ran-
dom exposure time of the frame-based camera To simulate a situation
where the inconsistent exposure time(temporally varying), we arbitrarily change
the number of frames corresponding to the exposure time(m in the main pa-
per) in the GoPro-15fps dataset. In the same manner as the main paper, we
set m + n = 16. For simulating random exposure time, we randomly select m
among {9, 11, 13, 15}. Please note that we performed motion deblurring without
exposure time information on random exposure time videos. Demo videos named
video results gopro.mp4 for random exposure time videos includes input, ground
truth, the predicted results of state-of-the-art(SoTA) video deblurring methods
CDVD-TSP [14], and proposed our methods.

Video results on our real-world event datasets with the unknown and
random exposure time of frame-based camera In the same manner as the
GoPro-15fps dataset, we simulate the random exposure time video by randomly



Event-guided Deblurring of Unknown Exposure Time Videos 5

selecting the frame number of exposure phase m. We set m + n = 14 and ran-
domly choose m among {9, 11, 13}. Demo videos named video results dvs.mp4
includes input, ground truth, the predicted results of state-of-the-art(SoTA)
event-guided video deblurring methods D2Nets [19], and proposed our method.

Video results on unknown exposure time real-world blurry videos Fi-
nally, we generated video demos of unknown exposure time real-world blurry
videos. Demo videos named video results real blur.mp4 includes input, the pre-
dicted results of state-of-the-art(SoTA) video deblurring methods CDVD-TSP [15],
SoTA event-guided video deblurring methods D2Nets [19], and proposed our
method.

4.2 Additional visual results

More visual comparisons on real-world unknown exposure time blurry
video frames In Fig. 4 and Fig. 5 and Fig. 6, we perform qualitative compar-
isons with the SoTA frame-based image deblurring methods (MIMOUNet+ [4])
and the SoTA event-guided video deblurring methods(D2Nets [19]) on real-world
blurry video frames captured by Color DAVIS-346 event camera. We confirm
that our method restores more precise, sharp details than other methods, even
in real-world blurry video frames.

More visual comparisons on the test split of our real-world event
datasets In Fig. 7 and Fig. 8 and Fig. 9 and Fig. 10, we perform qualitative com-
parisons with the SoTA frame-based image deblurring methods(DMPHN [28],
MIMOUNet+ [4], MPRNet [27]) and the SoTA video deblurring method(CDVD-
TSP [14]) and the SoTA event-guided video deblurring method (D2Nets [19]).
We confirm that our method can more precisely restore sharp images even in
severe blurry conditions caused by non-linear motion.

More visual comparisons on GoPro-15fps dataset [13] In Fig. 11 and
Fig. 12 and Fig. 13 and Fig. 14, we perform qualitative comparisons with the
SoTA frame-based image deblurring methods(HINet [2], MIMOUNet+ [4], MPR-
Net [27]) and video deblurring methods(ESTRNN [30], CDVD-TSP [14]). Our
proposed networks can restore a more plausible and sharp image than other
methods.

4.3 Additional average temporal activation maps of our ETES
modules on real-world blurry videos

In the main paper, we experimented with the ETES module’s estimation results
of unknown exposure time on real-world blurry videos. In addition, we experi-
mented on the exposure time estimation result of our ETES module for motion
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(

Fig. 3: The visualization results of the average temporal activation map of the
ETES module on the real-world blurry videos. The horizontal and vertical axes
represent the temporal axis and the average amount of channel activation, re-
spectively. The yellow and red dotted lines indicate the start and end of the
exposure time, respectively. The first and the last numbers indicate the expo-
sure and readout time of real-world blurry videos.

deblurring with a different combination of the exposure time-readout time set-
ting included in the main paper. For this experiment, we set exposure time as
{15, 30, 45, 60}ms and shutter period as 80ms. We then plotted averaged tem-
poral activation map of the ETES module for 200 video frames of each video clip
in Fig.3. Here, we confirmed that all activation is hardly activated in the readout
phase and mainly in the exposure phase, even in the different compositions of
main paper.

4.4 Implementation details of other event-guided methods

We retrain other event-guided methods(LEDVDI† [10], DMPHN† [28], Nah et
al .† [13], D2Nets† [19]) for same iterations as with our method. For all datasets,
we utilize the batch size of 8 and ADAM [8] optimizer to update weight using
a multi-step scheduler with an initial learning rate of 1 × 10−4 and decay rate
of 0.5. For data augmentation, we apply random cropping(256 × 256) to the
event and frame for the same position. Since D2Nets† [19] uses network input
for ground truth sharp frame(non-consecutively blurry frames assumption), we
replace ground truth sharp frame with blurry frame for fair comparisons. As can
be seen in the case of LEDVDI† [10](Tab.3), the retrained model shows much
better results than the official pretrained model.

Table 3: The evaluation results of LEDVDI† [10] on the real-world event dataset
using the pretrained model and retrained model. Please note the performance of
retrained model is much better than when using pretrained model.

9-5 11-3 13-1 Avg.
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

LEDVDI† [10](pretrained) 23.54 0.6783 23.44 0.6751 24.21 0.6986 23.73 0.6840

LEDVDI† [10](retrained) 34.77 0.9258 33.83 0.9138 32.96 0.9047 33.86 0.9148
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Table 4: The ablations of network according to various scales.
Real-world event dataset

Complexity
FLOPs(G)

9-5 11-3 13-1 Avg.
PSNR PSNR PSNR PSNR

Ours(2-scale) 36.36 35.46 35.74 35.85 149.79
Ours(3-scale) 36.98 36.06 35.98 36.35 237.77
Ours(4-scale) 36.64 35.95 35.68 36.09 324.89

4.5 Implementation details of other frame-based methods

As with the event-guided methods, we retrain frame-based image deblurring
method(MPRNet [27], MiMOUNet+ [4], DMPHN [28], Nah et al . [13]) and
video deblurring method (CDVD-TSP [14]) for 3.75× 105 iterations in the real-
world event dataset under their original hyperparameter setting provided by
authors. We apply random cropping(256 × 256) to the frame during training.
For all frame-based deblurring methods training, we used the official GitHub
code provided by authors.

4.6 Scale-ablation study

In Tab.4, we report the performance of the network structure according to vari-
ous scales. Using the 2-scale network structure reduces the cost; meanwhile, we
observed a slight performance drop. We also observed a marginal performance
variation with the 4-scale network. So, we selected the 3-scale network as our
backbone structure when considering the trade-off between complexity and per-
formance.
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Fig. 4: Visual comparisons on real-world unknown exposure time blurry video
frames.

Fig. 5: Deblurring results on real-world unknown exposure time blurry video
frames.
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Fig. 6: Deblurring results on real-world unknown exposure time blurry video
frames.
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Fig. 7: Visual comparison of unknown exposure time blurry video frames on our
real-world event datasets.



Event-guided Deblurring of Unknown Exposure Time Videos 11

Fig. 8: Visual comparison of unknown exposure time blurry video frames on our
real-world event datasets.
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Fig. 9: Visual comparison of unknown exposure time blurry video frames on our
real-world event datasets.
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Fig. 10: Visual comparison of unknown exposure time blurry video frames on our
real-world event datasets.
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(a) Input

(g) Ours

(b) HINet

(d) MIMOUNet+(c) MPRNet

(e) ESTRNN (f) CDVD-TSP

(h) GT

(a) Input

(g) Ours

Fig. 11: Visual comparison on the GoPro-15fps datasets.
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(a) Input
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Fig. 12: Visual comparison on the GoPro-15fps datasets.
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Fig. 13: Visual comparison on the GoPro-15fps datasets.
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Fig. 14: Visual comparison on the GoPro-15fps datasets.
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events and frames using recurrent asynchronous multimodal networks for monoc-
ular depth prediction. IEEE Robotics and Automation Letters 6(2), 2822–2829
(2021)

6. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June
2018)

7. Jiang, Z., Zhang, Y., Zou, D., Ren, J., Lv, J., Liu, Y.: Learning event-based motion
deblurring. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 3320–3329 (2020)

8. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

9. Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(June 2019)

10. Lin, S., Zhang, J., Pan, J., Jiang, Z., Zou, D., Wang, Y., Chen, J., Ren, J.S.:
Learning event-driven video deblurring and interpolation. In: ECCV (8). pp. 695–
710 (2020)

11. Mostafavi, M., Choi, J., Yoon, K.J.: Learning to super resolve intensity images from
events. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE/CVF (2020)

12. Mostafavi, M., Wang, L., Yoon, K.J.: Learning to reconstruct hdr images from
events, with applications to depth and flow prediction. International Journal of
Computer Vision 129(4), 900–920 (2021)

13. Nah, S., Hyun Kim, T., Mu Lee, K.: Deep multi-scale convolutional neural network
for dynamic scene deblurring. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 3883–3891 (2017)

14. Pan, J., Bai, H., Tang, J.: Cascaded deep video deblurring using temporal sharp-
ness prior. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 3043–3051 (2020)

15. Pan, J., Bai, H., Tang, J.: Cascaded deep video deblurring using temporal sharp-
ness prior. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (June 2020)

16. Paredes-Vallés, F., de Croon, G.C.: Back to event basics: Self-supervised learning of
image reconstruction for event cameras via photometric constancy. arXiv preprint
arXiv:2009.08283 (2020)



Event-guided Deblurring of Unknown Exposure Time Videos 19

17. Park, J., Woo, S., Lee, J.Y., Kweon, I.S.: Bam: Bottleneck attention module. In:
British Machine Vision Conference (BMVC). British Machine Vision Association
(BMVA) (2018)

18. Rebecq, H., Ranftl, R., Koltun, V., Scaramuzza, D.: Events-to-video: Bringing
modern computer vision to event cameras. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 3857–3866 (2019)

19. Shang, W., Ren, D., Zou, D., Ren, J.S., Luo, P., Zuo, W.: Bringing events into video
deblurring with non-consecutively blurry frames. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV). pp. 4531–4540 (October
2021)

20. Stoffregen, T., Scheerlinck, C., Scaramuzza, D., Drummond, T., Barnes, N., Klee-
man, L., Mahony, R.: Reducing the sim-to-real gap for event cameras. In: Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XXVII 16. pp. 534–549. Springer (2020)

21. Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., Wang, X., Tang, X.:
Residual attention network for image classification. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (July 2017)

22. Wang, L., , S.M.M.I., Ho, Y.S., Yoon, K.J.: Event-based high dynamic range image
and very high frame rate video generation using conditional generative adversarial
networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (June 2019)

23. Wang, L., Chae, Y., Yoon, K.J.: Dual transfer learning for event-based end-task
prediction via pluggable event to image translation. In: ICCV (2021)

24. Wang, L., Chae, Y., Yoon, S.H., Kim, T.K., Yoon, K.J.: Evdistill: Asynchronous
events to end-task learning via bidirectional reconstruction-guided cross-modal
knowledge distillation. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 608–619 (2021)

25. Wang, L., Kim, T.K., Yoon, K.J.: Eventsr: From asynchronous events to image re-
construction, restoration, and super-resolution via end-to-end adversarial learning.
In: CVPR. pp. 8315–8325 (2020)

26. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: Cbam: Convolutional block attention
module. In: Proceedings of the European Conference on Computer Vision (ECCV)
(September 2018)

27. Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H., Shao, L.:
Multi-stage progressive image restoration. arXiv preprint arXiv:2102.02808 (2021)

28. Zhang, H., Dai, Y., Li, H., Koniusz, P.: Deep stacked hierarchical multi-patch
network for image deblurring. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 5978–5986 (2019)

29. Zhang, S., Zhang, Y., Jiang, Z., Zou, D., Ren, J., Zhou, B.: Learning to see in
the dark with events. In: Computer Vision–ECCV 2020: 16th European Confer-
ence, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVIII 16. pp. 666–682.
Springer (2020)

30. Zhong, Z., Gao, Y., Zheng, Y., Zheng, B.: Efficient spatio-temporal recurrent neural
network for video deblurring. In: European Conference on Computer Vision. pp.
191–207. Springer (2020)

31. Zou, Y., Zheng, Y., Takatani, T., Fu, Y.: Learning to reconstruct high speed and
high dynamic range videos from events. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 2024–2033 (2021)


