
Supplementary Materials of Exploring
Hierarchical Graph Representation for

Large-Scale Zero-Shot Image Classification

Kai Yi1 , Xiaoqian Shen1 , Yunhao Gou12 , and Mohamed Elhoseiny1

1 King Abdullah University of Science and Technology (KAUST)
2 University of Electronic Science and Technology of China (UESTC)

{kai.yi, xiaoqian.shen, yunhao.gou, mohamed.elhoseiny}@kaust.edu.sa

The supplementary material provides:

– Section 1: Additional details on dataset splits;
– Section 2: Description on reconstructed hierarchical structure;
– Section 3: Additional training details;
– Section 4: Complementary experimental results on ImageNet-21K-P, Ima-

geNet 2-hops and ImageNet 3-hops;
– Section 5: Experimental results on low-shot classification;
– Section 6: Complementary strategy ablation study results and analysis.
– Section 7: Additional ablations and comment.

1 Dataset Description and Reconstructed Hierarchical
Structure Details

To make all of the classes fit into an appropriate location in the hierarchical
Directed Acyclic Graph (DAG), we remove fa11misc (Miscellaneous synsets
not in the major subtrees in the ImageNet 2011 Fall Release) from the original
hierarchical structure but add food and its sub-branches. And then, according to
the reconstructed hierarchical structure, those irrelevant classes are also removed
from the ImageNet-1K and ImageNet-21K (winter-2021 release), resulting in our
ImageNet-21K-D dataset. The processed result is presented in Tab. 1.

Class-wise Dataset Train Test Train+Test 2-hops 3-hops

Original 1,000 20,841 21,841 1,549 7,860

Processed 983 17,295 18,278 1,533 6,898

Table 1. Comparison between original ImageNet-21K (Original) and our ImageNet-
21K-D (Processed).

First four lines in Tab. 2 show our ImageNet-21K-D dataset splits. Please note
that the official validation set, 50 images for each seen class, is used neither in
ZSL training nor in ZSL validation. Our ZSL validation set is randomly sampled

https://orcid.org/0000-0003-0415-3584
https://orcid.org/0000-0001-6284-520X
https://orcid.org/0000-0002-1352-794X
https://orcid.org/0000-0001-9659-1551

2 Kai Yi et al.

Dataset Description Setting Train Val Test

ImageNet-21K-D
of Classes

seen 983 - -
unseen - 17,295 17,295

of Images
seen 1,259,303 - -

unseen - 792,510 11,337,589

ImageNet-21K-P
of Classes

seen 975 - -
unseen - 9,046 9,046

of Images
seen 1,252,157 - -

unseen - 452,300 9,847,116

Table 2. ImageNet-21K-D and ImageNet-21K-P dataset split for ZSL.

from unseen classes with at most 50 images per class, and all the images from
unseen classes are used for ZSL testing.

ImageNet-21K-P [9] is a pre-processed dataset from ImageNet21K by re-
moving infrequent classes, reducing the number of total numbers by half but
only removing only 13% of the original images. The original ImageNet-21K-P
contains 12,358,688 images from 11,221 classes. After the above-mentioned pre-
processing, class- and instance-wise splits are demonstrated in the rest four lines
in Tab. 2.

2 Hierarchical Structure

Tab. 3 shows several examples of the reconstructed hierarchical tree. More gen-
eral classes reside in the shallow layers, while the deeper layers contain more
specific ones.

Layer Example of Classes

1 plant, sport, artifact, animal, person

2 domestic animal, beach, painter

3 wildflower, ice field, vertebrate

... ...

12 Atlantic bottlenose dolphin, mouflon, Asian wild ox

Table 3. Example of classes in different layers. Noticed that we denote the root node
as layer 0.

Fig. 1 shows the imbalanced distribution of classes per layer in our recon-
structed hierarchical tree. Although there are 12 layers in the reconstructed
hierarchical tree, most nodes locate in 2th − 6th layers.

3 Implementation and Training Details

We choose ResNet-50 [2] provided by CLIP [8] as image encoder, which uses
the ResNet-D improvements from [3] and the antialiased rect-2 blur pooling

HGR-Net 3

Fig. 1. Distribution of classes in different layers on the ImageNet-21K-D dataset.

from [13], and replaces the global average pooling layer with an attention mech-
anism. The dimension of the extracted feature representation is 1024. Moreover,
our HGR-Net leverages two dimensions of hierarchical information. First, the
ground truth class and all the ancestor nodes of this class tracing from the hier-
archical tree are appended to form a list. We then set an outer ratio from this
list to select part of the parent nodes as candidates for the outer loop. Similarly,
within the outer loop, the inner ratio filters part of the parent nodes of the an-
chor node for the inner loop. In the inner loop, negative nodes of the outer-loop
anchors are sampled through TopM sampling strategies. These negative classes
contrast with the current layer’s ground truth to guide the learning represen-
tation. Text descriptions of negative classes, as well as the ground truth one,
are encoded into tokens and bracketed with start tokens and end tokens based
on byte pair encoding (BPE) [10] with the max length of 77. For text embed-
ding, we use CLIP [8] Transformer to extract semantic vectors with the same
dimensions as feature representation. We obtain the logits with L2-normalized
image and text features and calculate InfoNCE loss [7] layer by layer with an
adaptive re-weighting strategy. More specifically, a learnable parameter with a
size equivalent to the depth of the hierarchical tree is used to adjust the weights
adaptively in both the outer and inner loops.

We use the AdamW optimizer [5] applied to all weights except the adaptive
attention layer with a learning rate 3e-7 and a default weight decay. The reason
for choosing such a small learning rate is that we finetune CLIP [8] with a
hierarchical structure. Furthermore, a cosine scheduler is implemented to decay
the learning rate for each step. In addition, we use the SGD optimizer separately
for the adaptive layer with a learning rate of 1e-4. A learnable temperature
parameter τ is initialized as 0.07 from [12] to scale the logits, and gradient
clipping is utilized to avoid training instability. Besides, to accelerate training

4 Kai Yi et al.

and avoid additional memory, mixed-precision [6] is used, and the weights of
the model are only transformed into float32 for AdamW [5] optimization. The
maximum number of sampled contrastive classes is set as 256. Training and
testing are conducted on a Tesla V100 GPU with a batch size of 256 and 512,
respectively.

4 Performance Comparison

Here we show complementary comparisons on more variances of the ImageNet
dataset. We first show the results on the ImageNet-21K-P dataset [9]. The results
show that our method achieved significantly better performance compared with
baselines.

Models
Hit@ k(%)

TOR POR
1 2 5 10 20

SGCN(w2v) [4] 3.70 6.39 12.00 17.84 25.16 6.26 11.90

DGP(w2v w/o) [4] 3.88 6.62 11.85 17.54 25.14 5.11 12.04

DGP(w2v) [4] 4.01 6.72 12.10 17.93 25.77 8.14 13.30

SGCN(Tr) [4] 6.41 10.75 18.76 27.06 36.71 10.61 16.44

DGP(Tr w/o) [4] 7.09 11.67 20.32 28.53 38.43 9.57 18.58

DGP(Tr) [4] 7.20 11.95 20.98 29.81 39.62 14.59 19.33

CNZSL(w2v w/o CN) [11] 1.25 2.22 4.54 7.56 12.21 3.04 5.17

CNZSL(w2v w/o INIT) [11] 2.58 4.27 7.94 12.27 18.36 4.96 6.78

CNZSL(w2v) [11] 2.58 4.27 8.01 12.44 18.58 3.88 6.58

CNZSL(Tr w/o CN) [11] 3.27 5.59 10.69 16.17 23.33 5.32 7.68

CNZSL(Tr w/o INIT) [11] 7.90 12.77 21.40 29.50 38.63 11.23 12.56

CNZSL(Tr) [11] 7.97 12.81 21.75 29.92 38.97 11.50 12.62

FREE(w2v) [1] 3.95 6.32 11.85 16.57 24.93 5.76 8.31

FREE(Tr) [1] 8.15 12.90 21.37 30.29 40.62 11.82 13.34

CLIP [8] 19.33 28.07 41.66 53.77 61.23 20.08 20.27

HGR-Net(Ours) 20.08 29.35 42.49 52.47 62.00 23.43 23.22

Table 4. Result of ImageNet21K-P [9]. DGP(w/o) [4] means without separating adja-
cency matrix into ancestors and descendants, CN and INIT in CNZSL [11] means class
normalization and proper initialization respectively, and Tr is Transformer of CLIP for
short.

We also conduct the performance comparison on two smaller ImageNet-21K
variants, i.e., 2-hops, 3-hops. Tab. 5 proves the effectiveness of our method on
smaller datasets. The performance drops for all models on ”3-hops” test set
than ”2-hops” since seen classes are similar to unseen classes on ”2-hops”, while
distant from unseen classes on ”3-hops”. However, our method still outperforms
others when unseen classes are dominant in number and share less resemblance
with seen classes, which proves efficiency in knowledge transferring.

HGR-Net 5

Test Set Method
Hit@ k(%)

TOR POR
1 2 5 10 20

2-hops

SGCN(w2v) [4] 24.47 37.84 57.22 69.68 79.41 32.76 36.38
SGCN(Tr) [4] 28.19 42.57 61.69 72.89 81.48 37.74 38.10
DGP(w2v) [4] 24.57 37.67 56.88 69.60 79.17 34.94 37.04
DGP(Tr) [4] 29.47 43.87 62.79 74.65 83.14 39.98 41.25

CNZSL(w2v) [11] 11.99 19.11 32.46 44.31 56.40 17.37 16.70
CNZSL(Tr) [11] 27.17 40.20 57.45 67.86 76.08 32.27 24.29

CLIP [8] 35.24 48.51 65.01 74.61 81.96 39.34 41.99
HGR-Net(Ours) 36.11 49.46 65.90 75.69 82.98 40.87 42.63

3-hops

SGCN(w2v) [4] 4.87 8.73 17.21 25.46 35.55 8.20 24.05
SGCN(Tr) [4] 8.31 13.44 23.59 33.51 44.57 13.50 28.42
DGP(w2v) [4] 4.95 8.81 16.91 25.64 36.14 10.40 26.85
DGP(Tr) [4] 9.81 15.85 26.78 36.95 48.11 18.2 30.13

CNZSL(w2v) [11] 3.71 6.11 11.31 17.21 24.95 7.14 16.08
CNZSL(Tr) [11] 10.31 16.37 27.08 36.60 46.47 14.57 21.97

CLIP [8] 22.46 31.58 44.49 54.27 63.57 24.93 32.22
HGR-Net(Ours) 23.23 32.53 45.74 55.70 65.05 26.54 32.44

Table 5. Performance comparison among SoTA on 2-hops and 3-hops. Tr means text
encoder is CLIP Transformer.

5 Low-Shot Classification

We have presented the performance in the main paper, but we select all the
methods with Transformer of ClIP [8] in an independent graph to make it more
clear as Fig. 2 shows.

Fig. 2. Top@1, Top-Overlap Ratio (TOR) and Point-Overlap Ratio (POR) results
among different Transformer of ClIP [8] based methods. DGP(w/o) [4] means without
separating adjacency matrix into ancestors and descendants and Tr means the text
encoder is Transformer of ClIP [8].

6 Complementary Ablation Study of Weighting
Strategies

Fig. 3 4 5 6 7 show Top@1, Top-Overlap Ratio (TOR) and Point-Overlap Ratio
(POR) evaluation among Equal, Increasing, Decreasing, ↑ non-linear and ↓ non-
linear weighting strategies in different outer ratio (K) and inner ratio (M).

6 Kai Yi et al.

Fig. 3. Different outer ratio (K) and inner ratio (M) with weighting strategy Equal

Fig. 4. Different outer ratio (K) and inner ratio (M) with weighting strategy Increasing

Fig. 5. Different outer ratio (K) and inner ratio (M) with weighting strategy Decreasing

Based on extensive experiments, the adaptive weighting strategy with a learn-
able parameter obtained the best performance. The observed result of learned
weights firstly decreases and then increases as the depth goes deeper, which
can be deemed as inversely proportional to the number of classes in each layer.
Therefore, the Adaptive weighting can be simplified as: let Nj be the total num-
ber of classes in each layer j, and n be the number of layers, the weight for layer

j is defined as
1

Nj∑n
i=0

1
Ni

, in order to simplify the optimization and to achieve a

stable result. The imbalanced number of classes can explain this result in dif-
ferent layers as Fig. 1 and the model learns to activate layers with fewer classes
more frequently to balance classes among different hierarchies.

HGR-Net 7

Fig. 6. Different outer ratio (K) and inner ratio (M) with weighting strategy ↑ non-
linear

Fig. 7. Different outer ratio (K) and inner ratio (M) with weighting strategy ↓ non-
linear

7 Additional Ablations and Comment

Loss ablations. We found it could be interesting to consider more ablations on
our loss design, e.g., we consider two variants that both contain one single loop.
The first one only considers the inner loss regarding the ground truth as the
real label, while the second traces the ancestors of the ground truth as real
labels and searches negative for each one. Experimental results demonstrate the
performance drops by 5.61% and 1.40% respectively (see Table. 6 top part) and
prove our outer-inner loops are necessary.

Experimental comparison fairness. Our model and the baseline DGP [4] both
introduced the hierarchical semantic knowledge differently, but we demonstrated
significantly better performance, which shows that a better-designed hierarchical
graph can be critical to achieving good performance. The standard version of
other baselines does not introduce a hierarchical graph in the training step. So
we directly add HGR to the baseline CNZSL [11], dubbed CNZSL+HGR. As
Table 6 shows, leveraging our HGR can increase the CNZSL [11] performance
by 3.18% on average. We suggest it doesn’t improve much because CNZSL [11]
has a shallower architecture than CLIP [8] and builds on top visual features
instead of raw images. Besides, our method HGR-Net still shows significantly
better performance compared with CNZSL+HGR.

8 Kai Yi et al.

Method
Hit@ k(%)

TOR POR
1 2 5 10 20

HGR-Net(Ours) 16.39 24.19 35.66 44.68 53.71 18.90 16.19
- outer loss 15.47−0.92 22.80−1.49 33.65−2.01 42.23−2.45 50.97−2.74 17.00−1.90 15.80−0.39

- inner loss 16.16−0.23 24.00−0.19 35.47−0.19 44.38−0.30 53.46−0.25 18.49−0.41 16.09−0.10

CNZSL(w2v) 1.94 3.17 5.88 9.12 13.73 3.93 4.03
+HGR 1.96+0.02 3.20+0.03 5.95+0.07 9.28+0.16 13.92+0.19 4.38+0.45 5.15+1.12

CNZSL(Tr) 5.77 9.48 16.49 23.25 31.00 8.32 7.22
+HGR 5.91+0.14 9.54+0.06 16.79+0.50 23.83+0.58 31.71+0.71 8.56+0.24 10.28+3.06

Table 6. First part explores our method with different loss, (e.g., - outer loss only
calculates the inner loss). Second part compares CNZSL w/ or w/o additional graph
knowledge.

HGR-Net 9

References

1. Chen, S., Wang, W., Xia, B., Peng, Q., You, X., Zheng, F., Shao, L.: Free: Feature
refinement for generalized zero-shot learning. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV). pp. 122–131 (2021)

2. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

3. He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M.: Bag of tricks for image clas-
sification with convolutional neural networks. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 558–567 (2019)

4. Kampffmeyer, M., Chen, Y., Liang, X., Wang, H., Zhang, Y., Xing, E.P.: Rethink-
ing knowledge graph propagation for zero-shot learning. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 11487–
11496 (2019)

5. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International
Conference on Learning Representations (2019)

6. Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia, D., Ginsburg,
B., Houston, M., Kuchaiev, O., Venkatesh, G., et al.: Mixed precision training.
arXiv preprint arXiv:1710.03740 (2017)

7. Van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive
predictive coding. arXiv e-prints pp. arXiv–1807 (2018)

8. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry,
G., Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models
from natural language supervision. arXiv preprint arXiv:2103.00020 (2021)

9. Ridnik, T., Ben-Baruch, E., Noy, A., Zelnik-Manor, L.: Imagenet-21k pretraining
for the masses. arXiv preprint arXiv:2104.10972 (2021)

10. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with
subword units. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (2016)

11. Skorokhodov, I., Elhoseiny, M.: Class normalization for zero-shot learning. In: In-
ternational Conference on Learning Representations (2021), https://openreview.
net/forum?id=7pgFL2Dkyyy

12. Veeling, B.S., Linmans, J., Winkens, J., Cohen, T., Welling, M.: Rotation equiv-
ariant cnns for digital pathology. CoRR (2018)

13. Zhang, R.: Making convolutional networks shift-invariant again. In: International
conference on machine learning. pp. 7324–7334. PMLR (2019)

https://openreview.net/forum?id=7pgFL2Dkyyy
https://openreview.net/forum?id=7pgFL2Dkyyy

	Supplementary Materials of Exploring Hierarchical Graph Representation for Large-Scale Zero-Shot Image Classification

