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In this Appendix, we provide further details on various aspects of our track-
ing pipeline. First, we provide additional architectural and inference details in
Sections A and B. Second, we provide additional ablation studies, in particular
on the loss weighting parameter η on different benchmarks to show the impor-
tance of the auxiliary instance localization loss in Section C. Then, we provide
success plots for different Visual Object Tracking (VOT) benchmarks as well
as a detailed analysis of our results on LaSOT [6] by comparing our approach
against the other state-of-the-art methods for all the dataset attributes in Sec-
tion D. Finally, we provide some additional visual comparison to other trackers
in Section E.

A Additional Architecture details

Classification Scores Encoder Hθ First, we describe in Figure A1 the archi-
tecture of the Classification Scores Encoder Hθ. It takes as input the H × W -
dimensional scores predicted by the Instance Localization (Classification) branch
and outputs a 16 channels deep representation of those scores. The score encoder
consists of a convolutional layer followed by a max-pool layer with stride one and
two residual blocks. The output of the residual blocks has 64 channels. Thus, the
final convolutional layer reduces the number of channels of the output to 16 to
match the encoded scores with the mask encoding. All the convolutional layers
use (3 × 3) kernels with a stride of one to preserve the spatial size of the input
classification scores.
Segmentation Decoder Dθ The segmentation decoder has the same struc-
ture has in LWL [2]. Together with the backbone, it shows a U-Net structure and
mainly consists of four decoder blocks. It takes as input the extracted ResNet-50
backbone features and the combined encoding xf from both the instance localiza-
tion branch (Hθ(sc)) and the segmentation branch (xm), with xf = xm+Hθ(sc).
Since the encoded instance localization scores have a lower spatial resolution
than the mask encoding xm, we upscale the encoded instance localization scores
using a bilinear interpolation before adding it with the mask encoding xm. We
refer the reader to [2] for more details about the decoder structure.
Segmentation Branch We use the same architectures for the feature extractor
Fθ, the label encoder Eθ, the weight predictor Wθ, the few-shot learner Aθ and
the segmentation model Tτ as proposed in LWL [2]. Hence, we refer the reader
to [2] for more details.
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Fig.A1: Classification Scores Encoder Hθ.

Instance Localization Branch We use the same architectures for the feature
extractor Gθ, the model predictor Pθ and the instance model Tκ as proposed in
DiMP [1]. Hence, we refer the reader to [1] for more details.

B Additional Inference details

Search region selection The backbone does not extract features on the full
image. Instead, we sample a smaller image patch for extraction, which is centered
at the current target location and 6 times larger than the current estimated
target size, when it does not exceed the size of the image. The estimation of the
target state (position and size) is therefore crucial to ensure an optimal crop. In
most situations, the segmentation output is used to determine the target state
since it has a high accuracy. The target center is computed as the center of
mass of the predicted per-pixel segmentation probability scores. The target size
is computed as the variance of the segmentation probability scores.

If the segmentation branch cannot find the target (as described in the main
paper), but the instance branch still outputs a high enough confidence score, we
use it to update the target position. This is particularly important in sequences
where the target is becoming too small for some time, but we can still track the
target position.

When both branch cannot find the target, the internal state of the tracker is
not updated. We upscale the search area based on the previous 60 valid predicted
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Table A1: Ablation on the classification vs. segmentation loss weighting on differ-
ent datasets in terms of AUC (area-under-the-curve) and AO (average overlap)

LaSOT [6] GOT-10k [9] TrackingNet [13] NFS [8] UAV123 [12]
η AUC AO AUC AUC AUC

0.0 67.7 84.0 81.2 63.7 64.7
0.4 69.8 84.0 81.4 66.2 67.4
10 69.7 85.2 81.6 65.4 67.6

scales. This is helpful in situations where the size of the object shrinks although
its size does not change. This typically happens during occlusions, or if the target
goes out of the frame partially or completely.

C Additional Ablations

In this section, we provide additional ablation studies related to our method, first
on the weighting of the segmentation and classification losses used for training,
second on the parameters that might make a difference specifically for Video
Object Segmentation (VOS) benchmarks like Youtube-VOS [18].
Weighting segmentation and classification losses For this ablation, we
study the weighting of the segmentation loss Ls and the instance localization
loss Lc in the total loss Ltot. It used to train our model and its influence on the
overall performance during tracking. We recall that

Ltot = Ls + η · Lc. (1)

Table A1 shows the results when training the tracker with three different values
of η on five VOT datasets. First, we examine the case where we omit the aux-
iliary instance localization loss (η = 0.0). This means that the whole pipeline
is trained for segmentation and the instance branch is not trained to produce
specifically accurate localization scores. We observe that this setting leads to
the lowest performance on all tested datasets, often by a large margin. Secondly,
we test a dominant segmentation loss (η = 0.4), since the segmentation branch
needs to be trained for a more complex task than the instance branch. We see a
performance gain for almost all datasets. Thus, employing the auxiliary loss to
train the instance localization branch helps to improve the tracking performance.
We observe that using the auxiliary loss leads to localization scores generated
during inference that are sharper, cleaner and localize the center of the target
more accurately. Finally, we put an even higher weight on the classification term
(η = 10). This setup leads to an even more accurate localization, and leads to
the best results on average. Thus, we set η = 10 to train our tracking pipeline.
Fine-tuning on Youtube-VOS [6] In this section, we analyze whether we
can gear our pipeline towards VOS benchmarks. To do that, we take our model
and inference parameters, and modify them slightly. On the one hand, the model
is fined-tuned for 50 epochs using Youtube-VOS [18] only for both training and
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Table A2: Results on the Youtube-VOS 2019 [18] and DAVIS 2017 [15] datasets
with a fined tuned model and inference parameters refered as RTS (YT-FT).

YouTube-VOS 2019 [18] DAVIS 2017 [15]
Method G Jseen Junseen Fseen Funseen J&F J F

RTS 79.7 77.9 75.4 82.0 83.3 80.2 77.9 82.6
RTS (YT-FT) 80.3 78.8 76.2 82.9 83.5 80.3 77.7 82.9
LWL [2] 81.0 79.6 76.4 83.8 84.2 81.6 79.1 84.1
STA [21] 80.6 - - - - - - -
STM [14] 79.2 79.6 73.0 83.6 80.6 81.8 79.2 84.3

validation. We also increase the initialization phase from 100 to 200 frames, and
remove the relative target scale change limit from one frame to the next. In our
standard model, we limit that scale change to 20% for increased robustness.

The results are presented in Table A2 for Youtube-VOS [18] and Davis [15].
We observe that the performances between both of our models stay very close
for Davis, but that the fine-tuned model is getting closer to the baseline LWL [2]
for Youtube-VOS. The more frequent updates seem to help, and not restricting
the scale change of objects from frame to frames seems to play a role, since we
get an improvement of 0.6 in G score.

D Additional Evaluation results

In this section we provide additional plots of our approach on different bench-
marks, and a attribute analysis on LaSOT [6].
Success plots for LaSOT [6], NFS [8] and UAV123 [12] We provide in
Figure A2 all the plots for the metrics we report for LaSOT [6] in the paper:
Success, Normalized Precision and Precision plots. For completeness, we provide
the success plots for NFS [8] and UAV123 [12] in Figure A3.
Attribute analysis on LaSOT [6] In this section, we focus on the dataset
sequences attributes. We compare our approach to numerous other trackers, and
provide the detailed results in Table A3. Furthermore, we highlight the strength
of our approach in Figure A4 by focusing the comparison only to the two current
state-of-the-art methods ToMP-101 and ToMP-50 [10].

There are 14 attributes provided for LaSOT [6] sequences, representing dif-
ferent kind of challenges the tracker has to deal with in different situations.
Compared to existing trackers, our method achieves better AUC scores in 11 out
of 14 attributes. In particular, we outperform ToMP-50 [10] and ToMP-101 [10]
by a large margin for the following attributes: Camera Motion (+4.2% and
+2.7%), Scale Variation (+1.8% and 0.9%), Deformation (+3.1% and +2.2%),
Motion Blur (+3.1% and +2.5%) and Aspect Ratio Change (+1.7% and +1.0%).
Our method is only outperformed on three attributes by KeepTrack [11] and
ToMP [10] for Fast Motion (-2.3% to -4.1%) and for Illumination Variation (-
0.3% to -1.4%). For Background Clutter, RTS outperforms ToMP-50 [10] by 2.3%
and fall just behind ToMP-101 [10] (-0.1%).
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Fig.A2: Success, precision and normalized precision plots on LaSOT [6]. Our
approach outperforms all other methods by a large margin in AUC, reported in
the legend.

E Additional Content

Figure A5 shows additional visual results compared to other state-of-the-art
trackers on 6 different sequences of LaSOT [6]. For more content, we refer the
reader to: https://github.com/visionml/pytracking.

https://github.com/visionml/pytracking
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Fig.A3: Success plots on the UAV123 [12] (left) and NFS [8] (right) datasets in
terms of overall AUC score, reported in the legend.

Table A3: LaSOT [6] attribute-based analysis. Each column corresponds to the
results computed on all sequences in the dataset with the corresponding at-
tribute. Our method outperforms all others in 12 out of 14 attributes.

Illumination Partial
Deformation

Motion Camera
Rotation

Background Viewpoint Scale Full Fast
Out-of-View

Low Aspect
Total

Variation Occlusion Blur Motion Clutter Change Variation Occlusion Motion Resolution Ratio Change

LTMU [4] 56.5 54.0 57.2 55.8 61.6 55.1 49.9 56.7 57.1 49.9 44.0 52.7 51.4 55.1 57.2
LWL [2] 65.3 56.4 61.6 59.1 64.7 57.4 53.1 58.1 59.3 48.7 46.5 51.5 48.7 57.9 59.7
PrDiMP50 [5] 63.7 56.9 60.8 57.9 64.2 58.1 54.3 59.2 59.4 51.3 48.4 55.3 53.5 58.6 59.8
STMTrack [7] 65.2 57.1 64.0 55.3 63.3 60.1 54.1 58.2 60.6 47.8 42.4 51.9 50.3 58.8 60.6
SuperDiMP [1] 67.8 59.7 63.4 62.0 68.0 61.4 57.3 63.4 62.9 54.1 50.7 59.0 56.4 61.6 63.1
TrDiMP [17] 67.5 61.1 64.4 62.4 68.1 62.4 58.9 62.8 63.4 56.4 53.0 60.7 58.1 62.3 63.9
Siam R-CNN [16] 64.6 62.2 65.2 63.1 68.2 64.1 54.2 65.3 64.5 55.3 51.5 62.2 57.1 63.4 64.8
TransT [3] 65.2 62.0 67.0 63.0 67.2 64.3 57.9 61.7 64.6 55.3 51.0 58.2 56.4 63.2 64.9
AlphaRefine [19] 69.4 62.3 66.3 65.2 70.0 63.9 58.8 63.1 65.4 57.4 53.6 61.1 58.6 64.1 65.3
KeepTrack Fast [11] 70.1 63.8 66.2 65.0 70.7 65.1 60.1 67.6 66.6 59.2 57.1 63.4 62.0 65.6 66.8
KeepTrack [11] 69.7 64.1 67.0 66.7 71.0 65.3 61.2 66.9 66.8 60.1 57.7 64.1 62.0 65.9 67.1
STARK-ST101 [20] 67.5 65.1 68.3 64.5 69.5 66.6 57.4 68.8 66.8 58.9 54.2 63.3 59.6 65.6 67.1
ToMP-50 [10] 66.8 64.9 68.5 64.6 70.2 67.3 59.1 67.2 67.5 59.3 56.1 63.7 61.1 66.5 67.6
ToMP-101 [10] 69.0 65.3 69.4 65.2 71.7 67.8 61.5 69.2 68.4 59.1 57.9 64.1 62.5 67.2 68.5
RTS 68.7 66.9 71.6 67.7 74.4 67.9 61.4 69.7 69.3 60.5 53.8 66.3 62.7 68.2 69.7
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Fig.A4: Attributes comparison on LaSOT [6].
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Fig.A5: Qualitative results on LaSOT [6] of our approach compared to the pre-
vious state-of-the-art methods KeepTrack [11] and STARK-ST101 [20]. As they
do not produce segmentation masks, we represent ours as a red overlay and print
for all methods the predicted bounding boxes with the following color code:
� KeepTrack � STARK-ST101 � RTS
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