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Unleashing Transformers: Supplementary Material

The supplementary material for this work is divided into the following sections:
Appendix A describes the architectures and hyperparameters for the experiments
presented in the main paper; Appendix B illustrates the connection between our
proposed ELBO reweighting and the true ELBO; Appendix C contains extra
FID comparisons; Appendix D compares our approach with concurrent works;
Appendix E gives nearest neighbour examples to demonstrate generalisation;
and finally, Appendix F contains additional samples at resolutions higher than
the training data.

A Implementation Details

We perform all experiments on a single NVIDIA RTX 2080 Ti with 11GB of
VRAM using automatic mixed precision when possible. As mentioned in the
main paper, we use the same VQGAN architecture as used by Esser et al. [3]
which for 256 × 256 images downsamples to features of size 16 × 16 × 256, and
quantizes using a codebook with 1024 entries. Attention layers are applied within
both the encoder and decoder on the lowest resolutions to aggregate context
across the entire image. Models are optimised using the Adam optimiser [5]
using a batch size of 4 and learning rate of 1.8 × 10−5. For the differentiable
augmentations we randomly change the brightness, saturation, and contrast,
as well as randomly translate images. The datasets we use are both publically
accessible, with FFHQ availble under the Creative Commons BY 4.0 licence.
LSUN models are trained for 2.2M steps and the FFHQ model for 1.4M steps.

For the absorbing diffusion model we use a scaled down 80M parameter ver-
sion of GPT-2 [9] consisting of 24 layers, where each attention layer has 8 heads,
each 64D. The same architecture is used for experiments with the autoregressive
model. Autoregressive models’ training are stopped based on the best validation
loss. We also stop training the absorbing diffusion models based on validation
ELBO, however, on the LSUN datasets we found that it always improved or re-
mained consistent throughout training so each model was trained for 2M steps.

Codebook Collapse One issue with vector quantized methods is codebook
collapse, where some codes fall out of use which limits the potential expressivity
of the model. We found this to occur across all datasets with often a fraction
of the codes in use. We experimented with different quantization schemes such
as gumbel softmax, different initalisation schemes such as k-means, and ‘code
recycling’, where codes out of use are reset to an in use code. In all of these
cases, we found the reconstruction quality to be comparable or worse so stuck
with the argmax quantisation scheme used by Esser et al. [3].

Precision, Recall, Density, and Coverage To compute these measures we
use the official code releases and pretrained weights in all cases except Taming
Transformers on the LSUN datasets where weights were not available; in this case
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we reproduced results as close as possible with the hardware available, training
the VQGANs and autoregressive models with the same hyperparameters used
for the rest of our experiments. Following Nash et al. [7] we use the standard
2048D InceptionV3 features, which are also used to compute FID, k = 3 nearest
neighbours, and 50k samples, and use the code provided by Naeem et al. [6].

B Reweighted ELBO

In Sec. 3.2 we propose re-weighting the ELBO of the absorbing diffusion model
so that the individual loss at each time step is multiplied by T−t+1

T rather than
1/t. In this section we justify the correctness of this re-weighting by showing
it is equivalent to minimising the difference to a forward process that does not
have access to xt. As such, the loss takes into account the difficulty of denoising
steps and re-weights them down accordingly. This derivation is based on the true
ELBO derived by [1]. The loss at time step t can be written as

Lt = DKL(q(xt−1|x0) ∥ p(xt−1|xt))

=
∑
i

∑
j

q([xt−1]i,j |x0) log
q([xt−1]i,j |x0)

p([xt−1]i,j |xt)
,

(1)

where the first summation sums over latent coordinates i, and the second sum-
mation sums over the probabilities of each code j. For the absorbing diffusion
case where tokens in xt are masked independently and uniformly with probabil-
ity t

T , this posterior is defined as

q([xt−1]i = a|x0) =


1− t−1

T , if a = [x0]i and [xt]i = m.
t−1
T , if a = m and [xt]i = m.

1, if a = [x0]i and [xt]i = [x0]i.

0, otherwise.

(2)

The reverse process remains defined in the same way as the standard reverse
process:

p([xt−1]i = a|xt) =


1
t pθ([x0]i|xt), if a = [x0]i and [xt]i = m.

1− 1
t , if a = m and [xt]i = m.

1, if a = [x0]i and [xt]i = [x0]i.

(3)

Substituting these definitions into Eq. (1), the loss can be simplified to Eq. (4);
by extracting the constants into a single term out of the sum, C, the loss can
be further simplified to obtain Eq. (5), which is equivalent to our proposed
reweighted ELBO Eq. (1),

Lt =
∑
i

[
1 log

1

1
+

t− 1

T
log

t−1
T

1− 1
t

+

(
1− t− 1

T
log

1− t−1
T

1
t pθ([x0]i|xt)

)]
, (4)

= C −
∑
i

[
T − t+ 1

T
log pθ([x0]i|xt)

]
. (5)
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C Additional Comparisons

In Fig. 6 we demonstrated that models trained using our proposed ELBO reweight-
ing converge faster in terms of validation ELBO. To further substantiate this and
show that improvements extend to sample quality we compare models trained
directly on ELBO and our reweighting in terms of FID in Fig. 1. The same trend
is observed, with the models trained on the reweighting converging faster.

Since a key property of DDPMs is that sampling times can be reduced by
skipping time steps, in Fig. 2 we compare FID scores for various numbers of
sampling steps with a continuous DDPM applied in pixel space [8]. We find
that our approach using a discrete DDPM and Vector-Quantized image model
degrades in performance at a slower rate than the continuous DDPM likely due to
the reduced dimensionality, allowing sampling with fewer steps while maintaining
quality. In both cases, the performance for very low numbers of sampling steps
could potentially be improved with more sophisticated step selection schemes.
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Fig. 1: Models trained with our reweighted ELBO
converge faster than models trained directly on
ELBO.
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Fig. 2: FID vs number of
sampling steps on LSUN
Bedroom.

D Concurrent Works

Concurrent with our work, a number of similar approaches independently pro-
posed using diffusion-like models to model VQGAN latents, these approaches are
complementary to ours and distinct in a number of ways. VQ-Diffusion [4] use
a combination of multinomial and absorbing diffusion to encourage the model
to focus less on mask tokens. This, however, requires the use of an additional
auxilliary objective function to improve stability, and in practice our approach
achieves lower FID on the only shared dataset, FFHQ. MaskGIT [2] models
discrete latents by learning to unmask tokens using a similar training scheme
to ours; during sampling, tokens are unmasked based on the model’s confi-
dence. This approach allows sampling in very few steps, but the lack of the-
oretical justification makes it unclear how representative samples are. Latent
Diffusion [10] relaxes the discrete assumption, using continuous diffusion param-
eterised by a convolutional U-Net to model latents of greater spatial size, but
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with lower dimensional codes. Both compressing spatially/depth-wise and dis-
crete/continuous diffusion come with different trade-offs such as sampling time.

E Nearest Neighbours

When training generative models, being able to detect overfitting is key to ensure
the data distribution is well modelled. Overfitting is not detected by popular
metrics such as FID, making overfitting difficult to identify in approaches such as
GANs. With our approach we are able to approximate the ELBO on a validation
set making it simple to prevent overfitting. In this section we demonstrate that
our approach is not overfit by providing nearest neighbour images from the
training dataset to samples from our model, measured using LPIPS [11].

F Additional Samples

Fig. 6 contains unconditional samples with resolutions larger than observed in
the training data from a model trained on LSUN Bedroom.

Fig. 3: Nearest neighbours for a model trained on LSUN Churches based on
LPIPS distance. The left column contains samples from our model and the right
column contains the nearest neighbours in the training set (increasing in distance
from left to right).



5

Fig. 4: Nearest neighbours for a model trained on FFHQ based on LPIPS dis-
tance. The left column contains samples from our model and the right column
contains the nearest neighbours in the training set (increasing in distance from
left to right).

Fig. 5: Nearest neighbours for a model trained on LSUN Bedroom based on
LPIPS distance. The left column contains samples from our model and the right
column contains the nearest neighbours in the training set (increasing in distance
from left to right).
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Fig. 6: Unconditional samples from a model trained on LSUN Bedroom larger
than images in the training dataset.
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