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1 Pose Estimation

As Table 1, we evaluate the keypoints MPJPE (Mean Per Joint Position Error) met-
ric on human bodies of ZJU-MoCap dataset [0] for pose assessment. Our GP-NeRF
achieves 47.6mm on the unseen bodies. Specifically, we use OpenPose [1] to generate
groundtruth poses and predicted poses from groundtruth images and the correspond-
ing rendered novel view images respectively. Previous baselines NT [7], NHR [8] and
NB [6] perform per-scene training, so we evaluate their results on seen human bodies
for comparison. NT, NHR and NB get 57.3mm, 56.05mm and 51.3mm, respectively.
The generalizable baseline NHP [2] gets 56.05mm on the unseen human bodies. Our
method achieve over 7% improvement on the unseen human body pose assessment task,
even comparing to per-scene training methods.

Table 1. Pose Error Comparison. MPJPE (Mean Per Joint Position Error) results comparison
on human bodies of ZJU-MoCap dataset [6].

Method Unseen MPJPE |
NB [8] X 51.3 mm
NHR [8] X 56.0 mm
NT [7] X 57.3 mm
NHP [2] 56.1 mm
GP-NeRF (Ours) 47.6 mm

2 More Discussion on Method Comparisons

In this section, we further compare our contributions with some related human render-
ing methods: Neural Actor [4], Animatable SDF [5], MonoPort [3] and [9].

Our Geometry-guided Progressive NeRF differs from these previous methods [4,5,3,9]
in that it addresses two important issues of them with high efficiency:
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1) Inaccurate geometry prior and hard to adapt to the target human body.
Neural Actor and Animatable SDF transform the geometry prior (e.g., SMPL) to a
canonical space, or even directly use SMPL to guide point sampling for the ‘coarse’
step. However, the SMPL estimation does not always fit well to the target body, such
as missing the clothes regions, and hard to generalize accurately over different body
shapes. Differently, we learn query for each SMPL vertex to aggregate the multi-view
feature adaptively, and use a learnable network to expand the sparse geometry feature
volume to adapt to the target human body. After the ‘coarse’ step, our aggregated geom-
etry volume can generalize over different body shapes more accurately and even cover
the clothes regions.

2) Violating normal human body geometry structures. Methods like MonoPort
and [9] directly sample points from the whole 3D feature space (or generated 3D occu-
pancy fields (MonoPort), and then decide the human body opacity for later rendering.
However, these methods neglect coherence between the geometry prior and visual in-
put, which might generate results that violate the normal human body structures (e.g.,
legs / arms in the wrong places). Differently, our multi-view integration is guided by
learnable queries of the sparse vertices in SMPL. Therefore, we can adaptively fuse the
visual and geometry information, and construct the geometry volume that conforms to
the normal body geometry constraints with much fewer sampling points.

3 Result Videos

We provide some result videos on the ZJU-MoCap dataset under various generaliza-
tion levels. Specifically, we provide some demo result examples on the training frames
in seen.mp4, result examples on the unseen human body frames in unseen.mp4. In
each frame of these videos, we show two columns of images, where the left one is
the groundtruth and the right one is our synthesis results. For each video, the three in-
put cameras are uniformly set following the implementation details and fixed to their
locations, and we render different target views that roughly cover the 360 degrees sur-
rounded the human body to show our synthesis results.

4 Source Code

We provide our implementation code based on PyTorch in the following GitHub link:
https://github.com/sail-sg/GP-Nerf. Our code can also support custom data input from
the real life calibrated cameras.


https://github.com/sail-sg/GP-Nerf
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