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1 RenderNet

Our RenderNet is a UNet-based encoder-decoder CNN. It takes a 15D input (see
Fig. 1 of the main submission) consisting of concatenated scene coordinates in
camera space X (3D), surface normals map N (3D), albedo A (3D), roughness R
(1D), specularity S (1D), light direction map Ldir (3D), and light distance map
Ldist (1D). Its inference results in four 3D maps:Ddir, Dind, Gdir, and Gind being
the diffuse and glossy BSDF outputs for direct and indirect lighting, respectively.
Predicted outputs are then used to form a final rendering.

To train it, we used the Adam optimizer [12] with a learning rate of 1e−4.
Each of the four RenderNet outputs is supervised with respective ground truth
images using an L1 loss.

2 CBOD

Our CBOD detector consists of two modules: the correspondence module and
the pose estimation module. This section provides their detailed description. Our
detector largely follows [20, 11, 16, 13, 9].

Correspondence Module. Our correspondence module is a ResNet12-based
encoder-decoder CNN with four decoder heads to regress the ID mask and three
channels of the dense 2D-3D correspondence map (U, V, W) from a 320×240×3
RGB image. However, we would like to note that any other backbone architecture
could be used without any need to change the rest of the pipeline. The decoders
upsample features up to their original size using a stack of bilinear interpolations
followed by convolutional layers.

Correspondence heads regress tensors of size H×W×C, where C is the dis-
cretization density of the correspondence map, which equals to 256 in our case.
Each channel stores the probability values for the class corresponding to a spe-
cific channel number. Once regressed, we compose single channel tensors (U, V,
W) storing the class ID with maximal probability using the argmax operation.
Defining correspondence estimation as a classification problem allows us to sig-
nificantly decrease the output solution space, which subsequently results in a
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better quality of 2D-3D matches and faster convergence. Resulting U, V, and
W channels are used to form a 2D NOCS map encoding normalized object’s
coordinates in RGB. Visualizing each color component in 3D allows us to re-
store a partial object’s geometry as can be seen in Fig. 1 and establish 2D-3D
correspondences needed for pose estimation.

Similarly, the ID mask head outputs aH×W×O tensor with O corresponding
to the number of objects in the dataset plus one additional class for background.
We apply an argmax operation to the output tensor and identify detected classes.
Then, we use detected classes to retrieve class-specific channels, apply Otsu’s
method [15] to retrieve detected masks, and finally identify connected mask
regions. This strategy proved to be more robust when compared to directly
using argmax-based masks to define regions. Resulting mask regions are then
used by the pose module.

The final loss function for RenderNet is defined as the sum of four losses:

L = Lm + Lu + Lv + Lw, (1)

where Lm is the mask loss, and Lu, Lv, and Lw are the losses responsible for
the separate correspondence map channels U, V, and W. All losses are defined
as multi-class cross-entropy functions.

Pose Module. Given detected regions and estimated 2D-3D correspondences,
we use a Perspective-n-Point (PnP) [18] solver that estimates the camera pose
given correspondences and intrinsic parameters of the camera. Random sample
consensus or RANSAC [3] is used in conjunction with PnP to make predic-
tions more robust to outliers. We use a standard PnP-RANSAC implementation
Perspective-n-Point (PnP) provided in the OpenCV function solvePnPRansac.
We set the number of RANSAC iterations to 300 and reprojection error threshold
to 1.

Training Details. To train CBOD, we used the ADAM optimizer [12] with a
learning rate of 5e−4 and weight decay of 4e−5. As opposed to [8, 14, 20], we do
not use pretrained models and do not freeze the first layers of the network to
have a fair comparison between different types of data.

2D 3D

Fig. 1: 2D-3D correspondences. We recover partial geometry from a regressed 2D
NOCS map and establish 2D-3D correspondences.
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3 Baselines

Recall the two benchmarks HB Dynamic Lighting Benchmark where we train on
HB5 and HB-LM Cross Domain Adaptation Benchmark where we train onHB2.
For both benchmarks the training set consists of 272 frames, from which we gen-
erate an extended training set of 1088 with BlenderProc [1] using the posed CAD
models and with randomized materials, as described in the main text. Using the
synthetically generated images along with the corresponding real images (paired
or unpaired), we train the GAN baselines as described below. A preprocessing
step involves converting the synthetic images to grayscale, to avoid the com-
plication of having the same synthetic object with multiple random materials
being mapped to the same real object. Qualitative results for the HB Dynamic

Lighting Benchmark are shown in Fig. 3 while Fig. 4 shows qualitative results
for the HB-LM Cross Domain Adaptation Benchmark. Additionally, in Fig. 5
we show qualitative results when running the baselines on the additional 1000
frames generated with BlenderProc containing randomized camera viewpoints
and the same objects as HB2 but with randomized poses.

3.1 Paired image translation

We compare PNDR against two paired image translation GAN [5] based base-
lines: pix2pix [10] and pix2pixHD [19]. To train these methods we use synthetic
and real image pairs. Although this setting is unrealistic in practice, we leverage
this information from the HB dataset and train paired image-to-image transla-
tion, which we regard as an upper bound for in-domain performance.
pix2pix [10]: we use the official implementation [10, 21] and train for 200 epochs
with the Adam optimizer [12] and with a starting learning rate of 2e−4 and with
β1 = 0.5 and β2 = 0.999. The learning rate is kept fixed for the first 100 epochs
and decayed to 0 during the next 100 epochs. The input images are resized to
286×286 and a random crop of 256×256 pixels is selected.
pix2pixHD [19]: we use the official implementation and train for 200 epochs
the Adam optimizer [12] and with a starting learning rate of 2e−4 and with
β1 = 0.5 and β2 = 0.999. The learning rate is kept fixed for the first 100 epochs
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Fig. 2: Sampling novel light and materials. PNDR generates photo-realistic ren-
derings by sampling materials and light positions.



4 S. Zakharov & R. Ambrus
,
et al.

Input synthetic
image

Real image pix2pix [10] pix2pixHD [19] cycleGAN [21] CUT [17]

Fig. 3: Qualitative results on HB5. We show the results of the paired and upaired
image translation baselines on the HB5 scene used in the HB Dynamic Lighting Bench-
mark. Top row: images from the HB5 training set; last two rows: images from the HB5

test set. The real image is used as pair target when training [10, 19] while [21, 17] use
an unordered set of real images as targets.

Input synthetic
image

Real image pix2pix [10] pix2pixHD [19] cycleGAN [21] CUT [17]

Fig. 4: Qualitative results on HB2. We show the results of the paired and upaired
image translation baselines on the HB5 scene used in the HB-LM Cross Domain Adap-
tation Benchmark. Top row: images from the HB2 training set; last two rows: images
from the HB2 test set. The real image is used as pair target when training [10, 19]
while [21, 17] use an unordered set of real images as targets.



Photo-realistic Neural Domain Randomization 5

and decayed to 0 during the next 100 epochs. We train on the original image
resolution of 640×480 without any resizing and without any cropping.

Input synthetic
image

pix2pix [10] pix2pixHD [19] cycleGAN [21] CUT [17]

Fig. 5: Qualitative results on synthetic images containing the HB2 objects

rendered with random poses. This is a completely synthetic dataset (i.e., no real
image counterparts) and all GAN baseline methods struggle to generalize to generalize
to this setting.

3.2 Unpaired image translation

We also compare PNDR against the unpaired image translation baselines cy-
cleGAN [21] and CUT [17]. As before, we first convert the synthetic images to
grayscale to simplify learning. Nevertheless, we empirically observed poor trans-
lation results, and particularly the GANs failed to maintain the shape of the
objects, which is crucial to our downstream task, i.e., correspondence-based 3D
object detection. To improve the performance of these baselines, we leverage the
ground truth object masks, and added an L1 loss between the input grayscale
synthetic image and the image outputted by the generator, which we first con-
vert to grayscale as well. The L1 loss is applied only on the pixels falling in the
ground truth object mask. Although unrealistic in practice, this additional L1
loss helped the unpaired image translation method maintain the shape of the
objects in the generated images.
cycleGAN [21]: we use the official implementation [10, 21] and train for 200
epochs with the Adam optimizer [12] and with a starting learning rate of 2e−4

and with β1 = 0.5 and β2 = 0.999. The learning rate decay and input image
resolution are the same as when training pix2pix, the only difference being the
L1 loss between the generated image and the input synthetic image.
CUT [17]: we use the official implementation [17] and train for 400 epochs with
the Adam optimizer [12] with β1 = 0.5 and β2 = 0.999. The starting learning
is 2e−4 and is kept fixed for 200 epochs after which it is decayed linearly to
0 over the next 200 epochs. The input images are resized to 286×286 and a
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random crop of size 256×256 is selected during training. We apply the same L1
loss between the generated output image and the input synthetic image on the
pixels contained in the ground truth object mask.

4 Monocular Depth Estimation

4.1 Implementation details

monodepth2 [4]: We use the ResNet18 [7] encoder-decoder architecture, as
described in [4], without ImageNet pretraining. We train for 20 epochs with the
Adam optimizer [12] with β1 = 0.9 and β2 = 0.999. The learning rate starts at
1.5e−4 as is decayed by 20% every 5 epochs and the input images are resized to
256 × 320. We use standard color jittering and no cropping.
packnet-sfm [6]: we use the PackNet architecture from the official implemen-
tation. We train for 20 epochs with the Adam optimizer [12] with β1 = 0.9 and
β2 = 0.999. The learning rate starts at 2e−4 as is decayed by 20% every 5 epochs
and the input images are resized to 256 × 320. We use standard color jittering
and no cropping.

4.2 Losses

We follow the standard monocular depth estimation losses [2] defined as follows:

AbsRel =
1

N

∑

d∈D∗

|d− d∗|

d∗
(2)

RMSE =

√

1

|D∗|

∑

d∈D∗

|d− d∗| (3)

δ1 = % of d s.t. max

(

d

d∗
,
d∗

d

)

< 1.25 (4)

where d∗ and d represents respectively ground-truth and corresponding pre-
dicted depth values, with D∗ being the set containing all valid ground-truth
depth pixels.

5 Other Downstream Tasks

We extend the CBOD evaluation to support these tasks on the HB dynamic
lighting benchmark. In particular, we use CBOD’s multi-label object masks to
compute 2D bounding boxes. We use a standard F1 metric, which is defined as
a weighted average of precision and recall, to evaluate performance of 2D object
detection. We consider detections to be correct when the intersection over union
(IoU) between predicted and ground truth bounding boxes is >= 0.5. We also
evaluate the quality of estimated multi-label object masks using the IoU metric.
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Table 1: 2D detection and instance segmentation.

Train Method

HB5 HB10

F1 mIoU F1 mIoU

Real 0.92 0.95 0.21 0.46

CAD
RayTraced - 1088 0.54 0.74 0.07 0.34
PNDR - 1088 0.61 0.83 0.22 0.51

Our results on the new tasks are summarized in Table 1 and they are consistent
with our observations on the tasks of 6D object detection and monocular depth
estimation (cf. Tables 1, 2, and 5 in the main paper). For a constant light scene
(i.e. HB5), PNDR improves over training on domain-randomized ray tracing
images, closing the gap towards real data training. Additionally, PNDR achieves
much better generalization to a more difficult dynamic lighting scene (i.e. HB10),
improving even over the baseline trained directly on real data.
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