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In this supplementary material, we describe network parameters and spec-
ifications (Sec. A), details of our data generation and distribution (Sec. B),
evaluation metrics in our experiments (Sec. C), additional quantitative results
(Sec. D), additional qualitative results (Sec. E), tolerance to noise (Sec. F), and
qualitative results on other real data (Sec G). Our code and data are also at-
tached with this file.

A Network Specifications

We detail the full list of network parameters and specifications in this section.
MLP layers used in our network are uniformly denoted by MLP[l1, l2, ..., ld],
where li is the neuron number in the i-th layer. Each layer is followed by a
batch normalization and a ReLU layer except the final one. We also report
the efficiency and memory usage during inference at the end. Our code will be
publicly available.

A.1 Skeleton Configuration

In P2R-Net, the input is a pose trajectory with N frames and J joints as the
sequence of 3D locations T ∈ RN×J×3, where N = 768, J = 53. For each
trajectory, the humanoid agent interacts with up to 10 different objects in a
scene, with the frame number varying among sequences (depending on the object
interactions). To enable mini-batch training, we uniformly sample N frames per
sequence for training.

For the human skeleton structure, we use the predefined human body model
in VirtualHome [9], which uses the Unity3D human body template. We refer
readers to [1] for the detailed definition of the skeleton specifications. The root
joint r ∈ RN×3 that we use is the centroid of the hips, as illustrated in Figure 1.

A.2 Relative Position Encoder

We list the layer details of our relative position encoder in Figure 2. In Sec-
tion 3.1, the output pose feature dimension d1 = 64, the number of temporal
neighbors k = 20. From the input pose trajectory T , it outputs the relative pose
features P r ∈ RN×J×64 for spatio-temporal encoding.
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Fig. 1: Human skeleton configuration, following VirtualHome [9].

Fig. 2: Relative position encoder.

A.3 Spatio-Temporal Pose Encoder

Figure 3 illustrates the layer details of our spatio-temporal pose encoder in Sec-
tion 3.2. From the input pose feature P r, we use a graph convolutional layer
to learn intra-skeleton joint features. Edges in the graph convolution are con-
structed following the skeleton bones (as in Figure 1), which encodes skeleton-
wise spatial information. We use the method of [13] to build the edge connec-
tions from skeleton bones. With the learned joint features on each skeleton, we
then adopt a 1-D convolutional layer (feature dimension at 64, kernel size at 3,
padding size at 1) to process joint features in temporal domain. The kernel size
presents its receptive field on neighboring frames. We connect a graph layer and
a 1-D convolutional layer into a block with a residual summation from the input
(see Figure 3). We duplicate the block six times and stack them in a sequence to
construct the spatio-temporal pose encoder. After the spatio-temporal layers, we
then flatten all joint features in a skeleton, which results in a 64J-dimensional
feature per pose, followed by an MLP[256] to process each pose and produce the
final spatio-temporal pose features P st ∈ RN×d2 . d2 = 256.

A.4 Locality-Sensitive Voting

In Section 3.3 of the main paper, we sample M seeds rs from root joints r, where
M = 512. The M seeds are uniformly sampled along the trajectory of root joints
to ensure a even spatial distribution. P st

s are the corresponding pose features
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Fig. 3: Spatio-temporal pose encoder.

of rs, where rs ∈ RM×3, P st
s ∈ RM×d2 , d2 = 256. In Eq. 2 of the paper, we

use two MLPs, f3 and f4, to learn the vote locations and features (v,P v) from
(rs,P

st
s ), where f3 and f4 share the first two MLP layers and correspondingly

predict their targets from the last layer. We illustrate them in Figure 4.
From the 512 votes (v,P v), we group them into V clusters following [10],

which results in (vc,P c) cluster centers and features, where vc ∈ RV×3, P c ∈
RV×256, V=128. For poses whose root joint is not close to any object during
training (beyond a distance threshold td=1 m), we do not consider them to vote
for any object.

Fig. 4: Locality-sensitive voting.

A.5 Probabilistic Mixture Decoder

In Section 3.4 of the main paper, we learn multiple Gaussian distributions
N (µk

τ , Σ
k
τ ) for each regression target τ ∈ {c, s, θ}, k=1,...,P , where c, s, θ re-

spectively denote the box center, size and orientation; P is the number of distri-
butions (P=100). For each distribution, we also learn a mode score fk

τ (∗) ∈ [0, 1]
as its weight in predicting the target (see Eq.3 in the paper). vc ∈ vc, P c ∈ P c

represent a cluster center and feature, from which a proposal box is predicted.
The learnable parameters are {(µτ , Στ )} and {fτ}, where µτ ∈ RP×dr ; Στ ∈

RP×dr×dr . For each target τ ∈ {c, s, θ}, µτ represents the mean values of the
P Gaussian distributions, and Στ stores the corresponding covariance matrices.
µk
τ ∈ Rdτ and Σk

τ ∈ Rdτ×dτ are the k-th item in µτ and Στ respectively. dτ is the
dimension for each target, where dc=3; ds=3; dθ=2. Here we consider variables in
each Gaussian are independently distributed, resulting in a diagonal covariance
matrix. We formulate {(µτ , Στ )} as learnable embeddings shared among all
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samples in training and testing. Since covariance matrix in Στ is diagonal and
non-negative, we use a exponential function to process it diagonal elements.

fτ is realized with an MLP layer to predict mode scores for each target, where
we use MLP[128,128,128,100] appended with a sigmoid layer.

For the proposal objectness and probability distribution of class category, we
predict them directly from P c with MLP[128,128,dobj+dcls], where dobj=2 and
dcls=17 (the number of object categories), followed by a softmax layer to get
their probability scores in [0, 1].

To generate a hypothesis for each object during inference, we sample box
parameters with Eq. 4 in our paper. Each hypothesis is an average of Ns samples
of yτ . Ns is also a random number in [1, 100]. Additionally, we sample the object
class based on the predicted classification probability distribution.

We discard proposed object boxes which have low objectness scores (≤ to)
after a 3D non-maximum suppression (to = 0.5), which then outputs Nh hy-
potheses in a scene.

A.6 Efficiency and Memory in Inference

We train our network with batch size of 32 with 4 NVIDIA RTX 2080 GPUs
using PyTorch 1.7.1, and test it with a single GPU. We report the model size,
inference timing and allocated GPU memory in a single forward pass.

Model size Avg. time Peak. time Avg. memory Peak memory

2.04 M 0.092 s 0.582 s 11.64 MB 260.82 MB

Table 1: Model size, efficiency and memory usage of P2R-Net.

A.7 Specifications of Baselines

We explain the network details of each baseline as the following.

Pose-VoteNet Pose-VoteNet is a variant of VoteNet [10] to make it able to vote
for object centers from human poses. In our experiments, we replace the Point-
Net++ in original VoteNet with our position encoder, which produces relative
pose feature P r ∈ RN×J×64. We then flatten all joint features for each pose
(RN×64J) and learn the seed feature with MLP[256, 256, 256]. The coordinates
of each seed is located at the root joint, similar with ours. For the remaining
structures and loss functions, we keep them consistent with VoteNet.

Pose-VN To make Pose-VoteNet able to capture rotation information of poses,
we augment it by replacing MLP layers in Pose-VoteNet encoder with vector
neurons [4]. Vector neurons are a set of SO(3)-equivariant operators that capture
arbitrary rotations of object poses to estimate objects. For each MLP layer in
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Pose-VoteNet encoder, we replace it with a ‘VNLinearLeakyReLU’ layer, and
the final MLP layer with a ‘VNLinear’ layer, with equal number of parameters.
For the details of layer design in vector neurons, we refer readers to [4].

Motion Attention We replace the MLP layers (i.e., MLP[256, 256, 256]) in Pose-
VoteNet encoder with the attention module in [7] to learn inter-frame pose fea-
tures in the entire temporal domain. Specifically, for each pose feature in P r,
we use it to query similar features among all frames, which assembles repetitive
pose patterns to regress object boxes. For the layer details in motion attention,
we refer readers to [7].

P2R-Net-D We replace our probabilistic decoder with the VoteNet decoder [10]
along with their loss functions to produce deterministic results.

P2R-Net-G We ablate the P2R-Net decoder with a probabilistic generative
model [11,8], where we first lean a latent code z ∼ N (0, 1) from cluster fea-
tures P c. By decoding from the summation of z and P c ∈ P c, we can predict
box parameters in a probabilistic generative way.

P2R-Net-H We discretize each regression target into a binary heatmap, where
box centers are discretized into 103 bins in [-0.3 m, 0.3 m]3, centered at cluster
centers vc; box sizes are discretized into 103 bins in [0.05 m, 3m]3; box orienta-
tions are discretized into 12 bins in [-π, π]. Then the box regression is converted
into a classification task. We train them by cross-entropy losses. In testing, we
sample the heatmaps to produce different predictions.

B Data Generation and Data Statistics

We create our dataset using the VirtualHome simulation environment [9], which
is built on the Unity3D game engine. It consists of 29 rooms, where each room
has 88 objects on average. Each object is annotated with available interaction
types. For the detailed specification of interaction manners for different object
categories, we refer to [9,2].

VirtualHome allows users to customize action scripts to direct humanoid
agents to execute a series of complex interactive tasks. In our work, we fo-
cus on the static, interactable objects under 17 common class categories (i.e.,
bed, bench, bookshelf, cabinet, chair, desk, dishwasher, faucet, fridge, lamp, mi-
crowave, monitor, nightstand, sofa, stove, toilet, computer).

In each room, we select up to 10 random objects in the scene, and script
the agent to interact with each of the objects in a sequential fashion. For each
object, we also select a random interaction type associated with the object class
category. Sequences are trained with and evaluated against only the objects that
are interacted with during the input observation, resulting in different variants
of each room under different interaction sequences.

Then we randomly sample 13,913 different sequences with corresponding ob-
ject boxes to construct the dataset. The human pose trajectories are recorded
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Fig. 5: Distribution over number of objects in a pose trajectory.
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Fig. 6: Distribution of frame lengths in pose trajectories.

bed bench bookshelf cabinet chair desk dishwasher faucet fridge lamp microwavemonitornightstand sofa stove toilet computer
0

100

101

102

103

104

Fr
eq

ue
nc

y

Fig. 7: Frequency of object class categories among generated interactions.

with a frame rate of 5 frames per second. Over the sequences, the average num-
ber of objects is 7.86, and the average frame length is 509.34. The distributions
of the frame length and object number in a interaction trajectory are shown in
Figure 6 and Figure 5. The interaction frequency for each object class category
is illustrated in Figure 7, and we also list the frequency of each interaction type
in Figure 8.
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Fig. 8: Frequency of interaction types.

C Evaluation Metrics

In our method, we use mAP@0.5 to evaluate the detection accuracy by com-
paring our maximum likelihood prediction with the ground-truth. We also use
Minimal Matching Distance (MMD) and Total Mutual Diversity (TMD) to re-
spectively evaluate the quality and diversity of our multi-modal predictions. For
each input sequence, we sample our probabilistic mixture decoder and produce
10 hypotheses of object arrangements. We adapt MMD from [3] to evaluate our
task, and measure the best matching mAP@0.5 score with the ground-truth out
of the 10 hypotheses. For TMD, we follow [12] to evaluate the multi-modality of
our predictions, formulated as

TMD(Oi) = [1 + Entropy(C(Oi))] · [1 + Div(B(Oi))],

Div(B(Oi)) =
1

10

10∑
p=1

10∑
q=1

Dist(Bi
p, B

i
q); ,

Dist(Bi
p, B

i
q) =

1

8

8∑
j=1

||P −Q||2, P ∈ Bi
p, Q ∈ Bi

q,

C(Oi) = {ci1, ci2, ..., ci10},
B(Oi) = {Bi

1, B
i
2, ..., B

i
10}, Bi

k ∈ R8×3.

(1)

In Eq. 1, TMD is defined at the object-level; for each object Oi in a scene, we
have 10 hypotheses which are represented by 10 bounding boxes B(Oi) with the
corresponding 10 predicted class labels C(Oi); Bi

k is the k-th hypothesis in B(Oi),
which can be represented by a point set with eight box corners, and cik is the
corresponding class label; Entropy(∗) denotes the Shannon Entropy to measure
the variance of class labels; Div(∗) measures the diversity of predicted bounding
boxes among hypotheses, which is defined by the average of distance sum from a
hypothesis Bi

p to all other hypotheses; Dist(∗) is the average Euclidean distance

between pair-wise points from Bi
p and Bi

q.

TMD(Oi)=1 if all hypotheses are the same, where C(Oi))=0; Div(B(Oi)) = 0,
which indicates no diversity. In Section 5.3 of the main paper, we report the
average TMD score over all objects.
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bed bench bkshlf cabnt chair desk dishws faucet fridge lamp microw monitor nstand sofa stove toilet cmpter mAP@0.5

Pose-VoteNet 2.90 15.00 73.79 33.14 18.77 58.52 32.14 0.00 0.00 6.07 6.49 23.55 51.30 62.32 49.82 0.00 3.06 25.70
Pose-VoteNet + VN 20.81 18.13 78.25 49.76 18.68 70.92 33.56 0.00 0.00 5.60 5.23 22.71 64.46 67.24 46.76 0.00 6.11 29.90
Motion Attention 36.42 7.54 66.25 23.35 19.50 77.71 15.59 0.03 17.13 2.35 6.42 29.87 30.59 78.61 51.03 14.81 5.50 28.39

P2R-Net-D 93.77 12.63 37.21 11.98 5.77 95.93 61.80 0.10 73.95 0.58 7.39 9.68 9.62 88.44 70.42 0.00 14.17 34.91
P2R-Net-G 91.69 7.56 41.27 36.61 10.05 93.47 67.53 0.10 77.45 1.21 6.36 10.51 11.32 92.97 64.86 5.56 18.67 37.48
P2R-Net-H 85.84 8.04 43.78 22.04 10.91 76.08 55.20 0.00 55.15 0.00 1.57 4.24 20.31 83.92 57.60 5.00 4.33 31.41

Ours 94.21 10.12 41.75 54.72 8.02 93.32 56.33 0.06 59.89 3.25 6.49 12.84 46.53 90.92 57.86 61.11 19.94 42.20

Table 2: Quantitative evaluation on split S1.

bed bench bookshelf cabinet chair desk dishwasher faucet fridge microwave nightstand stove mAP@0.5

Pose-VoteNet 0.00 4.48 22.84 2.30 0.56 4.05 14.64 0.00 0.00 0.61 0.00 73.33 10.23
Pose-VN 0.00 0.96 19.88 7.99 0.51 0.14 10.61 0.00 0.00 0.00 0.01 33.33 6.12
Motion Attention 28.16 1.81 24.19 1.43 0.00 0.00 0.00 0.00 0.00 0.00 22.77 0.00 6.53

P2R-Net-D 39.86 25.17 26.78 3.29 0.18 56.53 76.39 0.00 86.50 30.75 0.00 33.33 31.56
P2R-Net-G 50.65 17.89 13.86 0.54 0.04 56.97 87.61 0.06 70.91 13.76 0.00 66.67 31.59
P2R-Net-H 48.22 10.43 39.12 15.12 0.02 41.26 71.18 0.00 76.10 0.69 0.01 33.33 27.96

P2R-Net 81.48 12.05 17.18 6.43 0.10 72.07 100.00 0.11 63.39 4.61 0.04 66.66 35.34

Table 3: Quantitative evaluation on split S2.

D Additional Quantitative Results

We list the mAP@0.5 scores on all object categories by split S1 and S2 in Table 2
and Table 3 respectively. P2R-Net variants are evaluated by the maximum like-
lihood predictions to calculate mAP scores. Note that there are fewer categories
in the test set of S2.

E Additional Qualitative Results

We show additional qualitative results on test splits S1 and S2 in Figures 9-11
and 12, respectively. We additionally visualize various multi-modal predictions
from our model on S1 in Figure 13.

F Tolerance to noise

As real data often contain noise, we additionally study the effect of Gaussian
noise (std=5 cm) onto the xyz coordinates of all joints in training and testing
with our dataset. Table 4 shows the effect of different noise levels in evalua-
tion. We also visualize some sampled predictions under the noise level at 10σ in
Figure 14, where our method presents compelling tolerance for very noisy inputs.

Noise level σ 2σ 3σ 5σ 10σ

S1 38.58 38.77 38.36 37.16 31.71
S2 27.16 26.13 27.72 29.18 26.18

Table 4: mAP@0.5 under varying levels of noise (σ=1 cm).
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(a) Input (b) Prediction (c) GT

Fig. 9: Additional results on estimating object layouts from a pose trajectory on
the sequence-level split S1 (unseen interaction sequences).

G Qualitative Results on Other Real Data

Besides the experiments on VirtualHome [9] and PROX [6,14], we additionally
qualitatively evaluate P2R-Net by training it on our dataset, and apply it to the
real-world human pose trajectory data provided by [5] describing human inter-
actions with single objects. The qualitative results are illustrated in Figure 15,
where we see that our method still can provide plausible object explanations
from natural and diverse real human poses.
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(a) Input (b) Prediction (c) GT

Fig. 10: Additional results on estimating object layouts from a pose trajectory
on the sequence-level split S1 (unseen interaction sequences).
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(a) Input (b) Prediction (c) GT

Fig. 11: Additional results on estimating object layouts from a pose trajectory
on the sequence-level split S1 (unseen interaction sequences).
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(a) Input (b) Prediction (c) GT

Fig. 12: Additional results on estimating object layouts from a pose trajectory
on the room-level split S2 (unseen interaction sequences and rooms).
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(a) Input (b) Sample 1 (c) Sample 2 (d) Sample 3 (e) Max. like-
lihood predic-
tion

(f) GT

Fig. 13: Additional multi-modal predictions of P2R-Net. By sampling our prob-
abilistic decoder multiple times, we can obtain various different plausible box
predictions.

(a) Prediction (b) GT (c) Prediction (d) GT

Fig. 14: Predictions on noisy inputs (std=10 cm).
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(a) Input (b) Multi-modal sample (c) Max. likelihood pre-
diction

Fig. 15: Multi-modal predictions on the real human pose trajectory input of [5].
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