Semantic-Aware Fine-Grained Correspondence
(Supplementary Material)

Yingdong Hu', Renhao Wang', Kaifeng Zhang', and Yang Gao':?*

! Tsinghua University
2 Shanghai Qi Zhi Institute
{huyd21,wangrh21,zhangkf19}@mails.tsinghua.edu.cn
{gaoyangiiis}@tsinghua.edu.cn

A Implementation Details

A.1 Fine-Grained Correspondence Network Pre-training

The implementation details of our fine-grained correspondence network are as
follows.

Data Augmentation We use only spatial augmentation, where two random
crops with scale [0.0, 1.0] from the image are generated and resized into 256 x 256.
Architectures Following [4/5/9], we adopt ResNet-18 as the backbone f and
reduce the stride of last two residual blocks (res3 and res4) to 1. The modified
backbone produces a feature map with size 32 x 32 (ablation in Appendix [B.2).
The dense projection and prediction head use the same architecture: a 1 x 1
convolution layer with 2048 output channels followed by batch normalization
and a ReLU activation, and a final 1 x 1 convolution layer with output dimension
256. The positive radius r used to control the size of spatial neighborhood is set
to 0.5.

Optimization We train the model with the Adam optimizer for 60k iterations.
The learning rate is set to 0.001. The weight decay is set to 0. The batch size is
96. For the target network, the exponential moving average parameter 7 starts
from 0.99 and gradually increases to 1 under a cosine schedule, following [2]. The
whole model can be trained on a single 24GB NVIDIA 3090 GPU.

A.2 Label Propagation

We follow the same label propagation algorithm in [4]. Specifically, given the
ground-truth labels in the first frame, a recurrent inference strategy is applied
to propagate the labels to the rest of the frames: we calculate the similarity
between the current frame with the first frame (to provide ground truth labels)
as well as the preceding m frames (to provide predicted labels). We reduce the
stride of the penultimate residual block (res4) of the backbone network to be
1 and use its output (stride 8) to compute a dense similarity matrix. To avoid
ambiguous matches, we define a localized spatial neighborhood by computing
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the similarity between pixels that are at most r’ pixels away from each other.
Finally, the labels of the top-k most similarly local feature vectors are selected
and are propagated to the current frame.

For a single network which only learns semantic correspondence or fine-
grained correspondence, the detailed test hyper-parameters for the three datasets
are listed in Table [A 1l

Table A.1l. Test hyper-parameters for a single network.

DAVIS JHMDB VIP

top-k 10 10 10
preceding frame m 20 8 8
propagation radius 7’ 12 3 15

Recall that in fusing the two different kinds of correspondence, we introduce
a new hyper-parameter A\. We report the test hyper-parameters for combined
correspondence in Table In general, we find that more neighbors (larger
top-k and propagation radius r’) are required for consistent performance.

Table A.2. Test hyper-parameters when fusing two kinds of correspondence.

DAVIS JHMDB VIP

weight A 1.75 1.0 1.0
top-k 15 20 10
preceding frame m 20 8 8
propagation radius 7’ 15 5 15

A.3 Semantic Segmentation Protocol

The backbone is kept fixed and we train a 1 x 1 convolutional layer on top to
predict a semantic segmentation map. We apply dilated convolutions in the last
residual block to obtain dense predictions. We use PASCAL[I] train_aug and
val splits during training and evaluation, respectively. We adopt mloU as the
metric. The 1 x 1 convolutional layer training uses base lr = 0.1 for 60 epochs,
weight decay = 0.0001, momentum = 0.9, and batch size = 16 with an SGD
optimizer.

A.4 Linear Classification Protocol

Given the pre-trained network, we train a supervised linear classifier on top of
the frozen features, which are obtained from ResNet’s global average pooling
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Table B.3. Results on DAVIS-2017 of FC using different training datasets.
The number of images per dataset is in parentheses.

Dataset | PASCAL(17K) COCO(118K) YT-VOS(95K) ImageNet(1.28M)
T&Fm | 67.9 68.2 67.7 67.9

layer. We train this classifier on the ImageNet train set and report top-1 clas-
sification accuracy on the ImageNet validation set. Following prior work[3], the
linear classifier training uses base lr = 30.0 for 100 epochs, weight decay = 0,
momentum = 0.9, and batch size= 256 with a SGD optimizer.

A.5 Combined with Image-level Pretext Task

We add BYOL loss to FC for joint optimization. Specifically, the two loss func-
tions share the same backbone encoder (outputs a feature map with size 32 x
32) and data loader (performs only spatial augmentation). But the projection
head and prediction head are not shared. The projection head of BYOL is a
two-layer MLP whose hidden and output dimensions are 2048 and 256. Note
that BYOL average-pool backbone features to aggregate information from all
spatial locations. Other implementation details follow FC. Two loss functions
are balanced by a multiplicative factor  (set to 1 by default).

B Additional Experimental Results

B.1 FC is Robust to Different Dataset

When pretrained on non object-centric dataset (e.g. COCO [6]), the performance
of typical image-level self-supervised methods drop significantly [7I8]. At the
same time, it is largely recognized that a larger dataset usually results in stronger
semantic representation for these methods. But this may not be true for a task
that requires analyzing low-level cues. The following Table[B.3|compares different
training datasets of FC. We can see that FC is robust to the size and nature of
the dataset. FC can effectively learn from a relatively small dataset. It actually
gains more benefits from datasets that contain more complex scenes with several
objects. The results on COCO even surpass Youtube-VOS used in the main body
of the paper.

B.2 Feature Resolution

We report the results of our fine-grained correspondence network (FC) using dif-
ferent feature resolutions in Table [B:4] The performance on DAVIS improves as
the resolution increases. This is intuitive, because higher resolution indicates the
local feature vectors correspond to a smaller region on the original image (small
receptive fields), which benefits fine-grained low-level correspondence learning.
But high-level semantics require larger receptive fields to encode more holistic
information.
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Table B.4. Effect of feature map resolution. The results increase as resolution
gets higher. We use 32 x 32 by default.

Feature Resolution ‘ J&Fm JIm Fm

8 x 8 63.3 61.8 64.8
16 x 16 65.2 63.4 67.0
32 x 32 67.6 64.7 70.5

B.3 Semantic Segmentation and Linear Classification

The quantitative comparison on different downstream tasks is shown in Ta-
ble For a fair comparison, we use ResNet-18 as MoCo backbone. CRW
surpasses MoCo on DAVIS, but is dramatically outperformed by MoCo on se-
mantic segmentation and image classification. Note that our FC model exhibits
similar properties as CRW: the learned representation is suitable for fine-grained
correspondence task, but lacks high-level semantic information. When we add
crucial missing semantic information, our SFC achieves significant improvements
on label propagation, semantic segmentation and image classification.

Table B.5. Comparison on label propagation, semantic segmentation and linear clas-
sification.

DAVIS PASCAL | ImageNet
Method | J&Fmw Jm  Fm mloU Acc@l
MoCo 62.1 60.3 63.8 25.5 48.7
CRW 67.6 64.8 70.2 13.0 12.6
FC 67.7 64.7 70.5 15.9 16.3
SFC 69.5 66.7 72.4 30.1 51.2

B.4 Semantic Correspondence Backbone

We use MoCo as the default semantic correspondence backbone in the main
experiment, but our framework is extensible to any arbitrary backbone that
is capable of producing spatial feature maps. In Table [B.6] we show that we
can flexibly swap out the semantic correspondence backbone for any off-the-
shelf self-supervised network and maintain strong performance on DAVIS. Some
methods such as SimCLR and BYOL even surpass MoCo. This strongly supports
our hypothesis that image-level representations in general contain information
about semantic correspondences.

B.5 Fine-Grained Correspondence Backbone

In Table [B:7], we replace our own FC network in SFC with another fine-grained
correspondence network CRW. We find the performance generally underperforms
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Table B.6. Results after replacing MoCo with alternate image-level self-supervised
representation learning methods.

Combination JE&Fn JTm  Fm
InstDis + FC 70.1 67.1 73.1

MoCo + FC 71.2 68.3 74.0
SimCLR + FC 714  68.6 74.2
BYOL + FC 71.3 684 74.1

SimSiam + FC | 70.2  67.3 73.1
VINCE + FC 704  67.7 73.2
VFS + FC 70.7 678 T73.7

SFC. FC is better than CRW on all evaluation metrics, as shown in Table [B.5
FC is also much simpler and computationally efficient. It takes less than a day
using a single GPU, but CRW reports seven days of training.

The results in Table [B.7]surpass image-level self-supervised methods or CRW
alone, demonstrating the benefits of considering two orthogonal correspondences
and the flexibility of our framework. It enables us to explore more effective and
efficient self-supervised learning methods for semantic or fine-grained represen-
tations separately.

Table B.7. Replace FC with another fine-grained correspondence model CRW.

Combination J&E&Fmn Tm  Fm
InstDis + CRW 69.6 66.6 72.6
MoCo + CRW 70.6 67.8 734
SimCLR + CRW 70.7 68.0 734
BYOL + CRW 70.9 68.1 73.6

SimSiam + CRW | 69.7 66.8 72.6
VINCE + CRW 70.3 676 T73.1
VFS + CRW 70.6  67.7 73.5

C Visualization

We provide a more detailed visualization of our SFC model on several down-
stream label propagation tasks. In Figure we show a comparison between
SFC and CRW on the visual object segmentation benchmark DAVIS-2017. Our
SFC model can generally output more accurate segmentation boundaries and
reduce the amount of mistakes and failures made by CRW. In Figure [C:2] and
Figure we provide visualizations on the human pose tracking benchmark
JHMDB and the human part tracking benchmark VIP. Note that in all our ex-
periments, no prior knowledge on human structure or object class is used. The
label propagation process is solely based on feature matching.
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Fig. C.1. Comparing our SFC with CRW on DAVIS-2017. Within each exam-
ple, the upper row is the output of CRW, and the lower row is the output of SFC. Blue
dashed boxes indicate the main areas of difference.
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Fig. C.2. Visualization on JHMDB. Pose keypoints and their initial positions are
defined on the input frame (outlined in blue), and propagated to the rest of frames.

Input Propagated Input \ Propagated |
< -
= Frame =1 Frames I K Frame 1 Frames !

b3 44100 14h
BB ECEC
ENEYLY EEEE5
bk R

Fig. C.3. Visualization on VIP. The segmentation map of different body parts are
defined on the input frame (outlined in blue), and propagated to the rest of frames.
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