
Rethinking Learning Approaches for Long-Term
Action Anticipation

Megha Nawhal1, Akash Abdu Jyothi1, and Greg Mori1,2

1 Simon Fraser University, Burnaby, Canada
2 Borealis AI, Vancouver, Canada

A Appendix

In this document, we provide additional quantitative and qualitative analyses,
and additional details of the implementation of our approach. Specifically, this
document contains the following items.

– Sec. A.1: Technical details of the implementation and evaluation of our pro-
posed approach
• Sec. A.1.1: Architecture details (network architectures and loss function)
• Sec. A.1.2: Implementation details (input representations and hyperpa-
rameters)

• Sec. A.1.3: Evaluation details
– Sec. A.2: Additional ablation analysis
– Sec. A.3: Additional visualizations and qualitative analysis
– Sec. A.4 Additional discussion

A.1 Technical Details

In this section, we provide additional details for implementation of our proposed
approach Anticipatr to supplement Sec. 3 in the main paper.

A.1.1 Architecture Details
We propose Anticipatr that uses a two-stage learning approach to train a
transformer-based model for the task of long-term action anticipation. The model
comprises three networks: segment encoder, video encoder and anticipation de-
coder. Fig. F1 shows the architecture of the three networks.

In the first stage, we train a segment encoder that receives a segment (se-
quence of frames from a video) as input and predicts the set of action labels that
would occur at any future time instant after the occurrence of the segment in
the video.

In the second stage, we train a video encoder and an anticipation decoder to
be used along with the segment encoder for long-term action anticipation. The
video encoder encodes the observed video to a video-level representation. The
segment encoder (trained in the first stage) is fed with a sequence of segments

2 M. Nawhal et al.

+

Multi-head self attention

FFN

V K Q

Add and Normalize

Add and Normalize

Video features

Positional encodings

Classifier

Future actions

+

Multi-head self attention

FFN

V K Q

Add and Normalize

Add and Normalize

Video features Positional encodings

(a) (b)

Add and Normalize

Multi-head Attention
V K Q

Add and Normalize

Multi-head Attention

FFN

Add and Normalize

V QK

label,
timestamps

label,
timestamps

label,
timestamps

no
action

Segment Encoder
(trained in stage 1) Video Encoder

Multi-head Self Attention

Video features Positional encodings

+

Segment Positional
encodings

Linear MLP

Future action instances

Time-conditioned
Anticipation queries

Add and Normalize

Anticipation queries

Linear Anticipation duration

(c)

Fig. F1. Detailed Architecture. Architecture overview of (a) Segment encoder, (b)
Video encoder, and (c) Anticipation Decoder. Refer to Sec. A.1.1 for details. ‘Q’,‘K’,‘V’
are query, key and value to the self-attention layer as described in [10].

Rethinking Learning Approaches for Long-Term Action Anticipation 3

from the observed video as input to obtain a segment-level representation of
the video. The anticipation decoder receives the two representations along with
the anticipation duration to predict a set of future action instances over the
given anticipation duration in a single pass. The video encoder and anticipa-
tion decoder are trained using classification losses on the action labels and two
temporal losses (L1 loss and temporal IoU loss) on the timestamps while the
segment encoder is kept unchanged.

Positional Encoding for Segment Encoder. The input to the segment en-
coder is a video segment. We represent the segment as a sequence of features.
As the encoder is permutation-invariant, we provide temporal information in
the segment using the sinusoidal positional encodings (c.f. Vaswani et al. [10])
based on timestamps corresponding to the features of input segment. Specifi-
cally, for each input feature of each embedding we independently use sine and
cosine functions with different frequencies. We then concatenate them along the
channel dimension to get the final positional encoding. In our implementation,
the embedding size is same as that of the segment feature so that they can be
combined by simple addition of the positional encodings and segment features.

Positional Encoding for Video Encoder. The input to the video encoder
is a video. We represent the video as a sequence of features. As the transformer
encoder is permutation-invariant, we provide temporal information in the input
video using the sinusoidal positional encodings (c.f. Vaswani et al. [10]) based
on timestamps corresponding to the features of input video. Specifically, for
each input feature of each embedding we independently use sine and cosine
functions with different frequencies. We then concatenate them along the channel
dimension to to get the final positional encoding. In our implementation, the
embedding size is same as that of the video feature so that they can be combined
by simple addition of the positional encodings and video features.

Anticipation Queries (Anticipation Decoder). The anticipation queries
are learnable positional encoding designed as a learnable embedding layer. The
positional encoding layer receives integer index i as input corresponding to i−th
anticipation query and provides an embedding qi

0 where i ∈ {1, . . . , Na}. In our
implementation, we use torch.nn.Embedding in Pytorch to implement this. The
weights of the layer are learnable during training, thus, the positional encoding
layer is also learnable. The initialization of this layer requires maximum possible
value of the index, i.e., Na in our case.

The anticipation queries q0 are then combined with anticipation duration Ta

using a simple neural network to create time-conditioned anticipation queries
qa. These time-conditioned queries enable the model to predict actions over any
specified anticipation duration.

Training. We provide supplemental details about computation of loss function
used to train the networks in the second stage (i.e., action anticipation stage)
of our Anticipatr approach. The training involves aligning groundtruth and
predicted set of action instances followed by computing the anticipation loss
over all aligned pairs.

4 M. Nawhal et al.

Greedy Set Correspondence. Given an observed video, the groundtruth
set of future action instances varies based on input whereas our anticipation
decoder predicts a set of fixed size (larger than maximum size of groundtruth
sets in the dataset). Therefore, there is no prior correspondence between the
groundtruth and predicted set. We derive this correspondence using a greedy
algorithm based on temporal overlap among instances. Intuitively, the objec-
tive is to correctly align actions at as many future time instants as possible.
We first sort the action instances groundtruth set based on the descending or-
der of the duration of the instances. We begin the alignment process with the
groundtruth instance having the maximum duration. We lookup the predicted
set to find the predicted instance that has maximum temporal overlap with this
groundtruth instance. Since the predicted set is designed to represent a single
action instance, the alignment between groundtruth and predicted set is one-to-
one. Thus, to continue the alignment process, the matched groundtruth instance
and predicted instance are removed from the corresponding sets. In this way, this
process is repeated until the groundtruth set is empty. As the predicted set is of
size larger than groundtruth set, the remaining predicted instances are mapped
to ∅ denoting no action. In Sec. A.2, we also evaluate anticipation results of
models trained using another set correspondence algorithm, namely, Hungarian
matcher (see Table T9 and Table T10).

Loss function. We compute loss L (defined in Eq. (4) in the main paper)
over all the matched pairs as a weighted combination of cross-entropy loss for
classification and two temporal losses (L1 loss and IoU loss Liou) for prediction
of segment timestamps. Here, we provide our motivation behind temporal loss
and provide additional description.

The L1 temporal loss is sensitive to the absolute value of the duration of the
segments. The IoU loss Liou is invariant to the duration of the segments. Thus,
these two losses together are designed to incorporate different aspects of segment
prediction. For completeness, we describe Liou as follows.

Liou(s
i, ŝγ(i)) = 1− |si ∩ ŝγ(i)|

|si ∪ ŝγ(i)|
, (1)

where |.| is the duration of the instance, i.e., difference between end and start
timestamp.

A.1.2 Training Details

For training of first stage, we use dropout probability of 0.1. For the segment
encoder, we use base model dimension as 2048 and set the number of encoder
layers as 3 with 8 attention heads. We use an effective batch size of 64 for training
segment encoder on this dataset. For training in the second stage, we use base
model dimension in the video encoder and anticipation decoder as 2048 and set
the number of encoder and decoder layers as 3 with 8 heads.

Rethinking Learning Approaches for Long-Term Action Anticipation 5

We use four datasets – Breakfast, 50Salads, EPIC-Kitchens-55, EGTEA
Gaze+ – to evaluate our model on long-term action anticipation. We provide
dataset-specific hyperparameters as follows.

We train all our models using AdamW [6] optimizer on 4 Nvidia V100 32GB
GPUs. We initialize all the learnable weights using Xavier initialization.

Breakfast. We represent input videos as I3D features provided by [1]. We
choose Na (anticipation queries) to be 150. We use an effective batch size of
16 for training the video encoder and anticipation decoder on this dataset on
the long-term anticipation task. We train our models with a learning rate of
1e-4 and a weight decay of 0. The model is trained for 4000k steps. We use a
dropout probability of 0.1. We set λL1 = 3 and λiou = 5. To obtain segment-
level representation of the observed video during action anticipation, we use a
temporal window of length k = 16.

50Salads. We represent input videos as Fisher vectors computed using [2].
We choose Na (anticipation queries) to be 80. We use an effective batch size of
16 for training the video encoder and anticipation decoder on this dataset on
the long-term anticipation task. We use a learning rate of 1e-5 and a weight
decay of 1e-5. We train the model for 3000k steps and reduce the learning rate
by factor of 10 after 1500k steps. We don’t use dropout for this dataset. We set
λL1 = 3 and λiou = 5. To obtain segment-level representation of the observed
video during action anticipation, we use a temporal window of length k = 48.

EPIC-Kitchens-55. We represent input videos as I3D features provided by
[3, 7]. We use an effective batch size of 16 for training the video encoder and
anticipation decoder in the second stage. We choose Na (anticipation queries)
to be 900. We use a learning rate of 1e-4 and a weight decay of 1e-5. We train
the model for 6000k steps and reduce the learning rate by factor of 10 after
4000k steps. We use a dropout probability of 0.1. We set λL1 = 5 and λiou =
8. To obtain segment-level representation of the observed video during action
anticipation, we use a temporal window of length k = 32.

EGTEA Gaze+. We represent input videos as I3D features provided by
[3, 7]. We use an effective batch size of 16 for training the video encoder and
anticipation decoder in the second stage. We choose Na to be 600. We use a
learning rate of 1e-5 and a weight decay of 1e-5. We train the model for 4000k
steps and reduce the learning rate by factor of 10 after 3000k steps. We use a
dropout probability of 0.1. We set λL1 = 3 and λiou = 5. To obtain segment-
level representation of the observed video during action anticipation, we use a
temporal window of length k = 24.

A.1.3 Evaluation Details
Note that our model predicts a set of action instances, wherein, each action in-
stance is of the form (label, start time, end time). To evaluate the model outputs
as per the benchmarks, we do the following postprocessing.

For Breakfast and 50Salads, following the benchmark [9], we evaluate the
action anticipation outputs over a dense timeline. Our proposed Anticipatr
predicts a set of action instances. During evaluation, we process this set of action

6 M. Nawhal et al.

Table T1. Ablation: Loss function (Breakfast and 50Salads). We report the
mean over classes accuracy for different observation/anticipation durations. Higher
values indicate better performance. ✓ and ✗ indicate whether the component of the
temporal loss is used or not respectively.

Method βo → 20% 30%

βa → 10% 20% 30% 50% 10% 20% 30% 50%

Breakfast L1: ✗; Liou:✓ 36.2 30.7 28.6 26.4 38.7 33.9 31.0 27.3
L1: ✓; Liou:✗ 36.5 31.1 29.1 28.2 39.2 34.2 31.7 28.1
L1: ✓; Liou:✓ 37.4 32.0 30.3 28.6 39.9 35.7 32.1 29.4

50Salads L1: ✗; Liou:✓ 40.2 33.9 26.8 26.0 41.9 41.4 27.6 23.3
L1: ✓; Liou:✗ 40.8 34.5 27.1 26.8 42.1 41.6 27.9 23.4
L1: ✓; Liou:✓ 41.1 35.0 27.6 27.3 42.8 42.3 28.5 23.6

Table T2. Ablation: Loss function (EK-55 and EGTEA+). We report mAP
values for all classes, frequent classes (> 100 action instances) and rare class (< 10
action instances). Following [7], we report the mAP values averaged over different
observation durations. Higher values implies better performance. ✓ and ✗ indicate
whether the component of the temporal loss is used or not respectively.

Method EK-55 EGTEA+

All Freq Rare All Freq Rare

L1: ✗; Liou:✓ 34.9 56.4 27.3 75.2 82.1 53.8
L1: ✓; Liou:✗ 37.7 57.8 28.4 76.0 82.7 54.6
L1: ✓; Liou:✓ 39.1 58.1 29.1 76.8 83.3 55.1

instances to construct a timeline corresponding to the anticipation duration.
We refer to the timeline as a sequence of action labels for time instants in the
anticipation duration, i.e., between To + 1, . . . , To + Ta. In the benchmarks, the
timeline contains a single action class corresponding to each time instant. We
iterate over the predicted set to assign class labels to this timeline. Specifically,
for each action instance in the predicted set, we assign the predicted action
class to the time instants that are within the predicted segment (determined by
predicted start and end timestamp). When predicted action instances overlap at
certain time instants, we assign the action class with highest probability score
among the overlapping predictions. Once the timeline is constructed, we compute
mean over classes accuracy [9] to evaluate the model performance. Note that we
are constructing this timeline only during evaluation to follow the benchmark
evaluation protocols.

For EPIC-Kitchens-55 and EGTEA Gaze+, we perform a union over the
action classes in the predicted set of instances to obtain a set of future action
classes. We remove ∅ class from this set and use this set to compute mAP as
described in benchmark [7].

A.2 Additional Ablation Analysis

In this section, we report our findings from additional ablation experiments.
Ablation: Loss function. The training loss function defined in Eq. (4) in
the main paper contains three components (cross-entropy loss and two temporal
losses). We conduct ablation experiments by removing one of the temporal losses.

Rethinking Learning Approaches for Long-Term Action Anticipation 7

Table T3. Ablation: Anticipation Queries (Breakfast and 50Salads). We re-
port the mean over classes accuracy for different observation/anticipation durations.
Higher values indicate better performance.

Method βo → 20% 30%

βa → 10% 20% 30% 50% 10% 20% 30% 50%

Breakfast Na = 50 32.6 28.2 26.4 24.3 35.8 31.4 28.7 25.3
Na = 150 37.4 32.0 30.3 28.6 39.9 35.7 32.1 29.4
Na = 500 36.6 31.5 29.4 27.3 38.5 34.4 31.3 28.3

50Salads Na = 20 38.4 33.2 24.2 23.6 39.1 35.6 25.5 24.2
Na = 80 41.1 35.0 27.6 27.3 42.8 42.3 28.5 23.6
Na = 320 40.5 34.2 26.0 25.6 41.3 40.9 27.4 23.3

Table T4. Ablation: Anticipation Queries (EK-55 and EGTEA+). We report
mAP values for all classes, frequent classes (> 100 action instances) and rare
class (< 10 action instances). Following [7], we report the mAP values averaged over
different observation durations. Higher values implies better performance.

Dataset All Freq Rare

EK-55 Na = 300 34.3 55.6 24.2
Na = 900 39.1 58.1 29.1
Na = 2700 38.2 56.9 28.3

EGTEA+ Na = 200 70.2 79.5 49.7
Na = 600 76.8 83.3 55.1
Na = 1800 75.3 82.4 53.3

Note that we always need cross entropy loss for the classification task. Results
in Table T1 and Table T2 show that models trained with overall loss perform
better than the ones trained with the ablated versions. Moreover, the models
trained with only L1 temporal loss perform better than the ones trained with
only Liou.
Ablation: Anticipation queries. The number of anticipation queries discerns
the maximum number of action instances the model is supposed to predict.
Results in Table T3 and Table T4 shows the performance of our model with
different number of anticipation queries. The results suggest minor improvement
with higher number of anticipation queries, however, the models with more num-
ber of queries require longer training times. Intuitively, a very large number of
anticipation queries implies the model will require more time to learn the non-
maximal suppression of the irrelevant predictions. On the other hand, when the
number of anticipation queries is reduced, the anticipation performance of our
model degrades. A very small number of anticipation queries implies less number
of action are anticipated. Thus, for very complex video with many future action
instances, the model would miss several action instances resulting in poor antic-
ipation performance. Additionally, as shown in Table T3, the anticipation error
increases over time. This is because there are more actions to be anticipated and
the model is limited by the number of anticipation queries.
Ablation: Segment window length. Results in Table T5 and Table T6 shows
the performance of our model with different values of temporal window lengths
used to extract segment-level representations during action anticipation. The re-
sults suggest that neither a very small window length nor a very large window is
helpful. The segment encoder is trained to predict future actions given a video

8 M. Nawhal et al.

Table T5. Ablation: Segment window length (Breakfast and 50Salads). We
report the mean over classes accuracy for different observation/anticipation durations.
Higher values indicate better performance.

Method βo → 20% 30%

βa → 10% 20% 30% 50% 10% 20% 30% 50%

Breakfast k = 4 35.9 30.6 26.3 26.1 38.4 33.6 30.8 28.2
k = 16 37.4 32.0 30.3 28.6 39.9 35.7 32.1 29.4
k = 64 37.4 31.7 29.9 28.1 39.1 35.0 31.7 28.7

50Salads k = 12 39.0 33.5 25.8 25.4 39.6 38.4 26.4 21.5
k = 48 41.1 35.0 27.6 27.3 42.8 42.3 28.5 23.6
k = 192 41.0 34.8 27.2 26.8 42.6 42.1 27.5 22.8

Table T6. Ablation: Segment window length (EK-55 and EGTEA+). We
report mAP values for all classes, frequent classes (> 100 action instances) and
rare class (< 10 action instances). Following [7], we report the mAP values averaged
over different observation durations. Higher values implies better performance.

Dataset All Freq Rare

EK-55 k = 8 37.9 57.2 27.4
k = 32 39.1 58.1 29.1
k = 128 38.8 58.0 28.7

EGTEA+ k = 6 75.4 81.7 53.9
k = 24 76.8 83.3 55.1
k = 96 76.3 82.9 54.8

segment depicting a single action. During the action anticipation stage, when the
segment encoder is used to extract segment-level representations, the observed
video is divided into a series of non-overlapping segment using temporal sliding
windows as the action boundaries are not known. Intuitively, when the temporal
sliding window is very small, the individual segments do not have enough infor-
mation to obtain effective representations. On the other hand, when the window
is very large, the segments contain more than one action and potentially results
in segment-level representations with overlapping semantic content. We observe
that the drop in performance with models that use smaller window lengths is
larger as compared to the ones with larger window lengths.

Ablation: Sliding Windows for Segment Encoder Training. Instead of
using action boundaries we used sliding temporal windows of length=k (same
as used during stage 2) to obtain segments for segment-level training. Results in
Table T7 and Table T8 show that this approach results in a slightly lower per-
formance than our proposed training approach. This is possibly due to increased
noise in the segment-level representations from this training approach.

Table T7. Ablation: Sliding windows for Segment Encoder Training. Mean
over classes accuracy for different observation/anticipation durations. Higher is better.
[BF: Breakfast; 50SL: 50Salads]

Observation (βo) → 20% 30%

Anticipation (βa) → 10% 20% 30% 50% 10% 20% 30% 50%

B
F

Sliding windows 35.9 30.7 28.0 26.4 37.8 33.5 29.9 25.2
Anticipatr(Full) 37.4 32.0 30.3 28.6 39.9 35.7 32.1 29.4

5
0
S
L

Sliding windows 37.2 33.5 26.3 25.8 37.9 37.0 26.1 24.5
Anticipatr(Full) 41.1 35.0 27.6 27.3 42.8 42.3 28.5 23.6

Rethinking Learning Approaches for Long-Term Action Anticipation 9

Table T8. Ablation: Sliding windows for Segment Encoder Training. mAP
values for all classes, frequent classes (> 100 action instances) and rare class (< 10
action instances). Higher is better.

Method EK-55 EGTEA+

All Freq Rare All Freq Rare

Sliding Windows 37.6 56.5 27.4 74.8 81.2 53.0
No Video Encoder 30.9 51.8 21.2 70.2 79.9 50.1
Anticipatr(Full) 39.1 58.1 29.1 76.8 83.3 55.1

Ablation: Set correspondence. To compute the anticipation loss, we use a
greedy algorithm to align groundtruth and predicted set of action instances. An-
other commonly employed set correspondence algorithm is Hungarian matcher
algorithm used in prior works [4,5]. For completeness, we also conducted exper-
iments with Hungarian matcher optimized over the cost function with all three
terms (classification loss and two temporal losses) following [8]. We didn’t ob-
serve any significant difference in performance of the models trained using either
of the two matchers as shown in Table T9 and Table T10.

A.3 Additional Qualitative Analysis

Visualizations in Fig. F2 and Fig. F3 show that our model is generally able to
anticipate correct actions at future time instants long anticipation durations for
Breakfast and 50Salads benchmarks respectively.

Visualizations in Fig. F4 and Fig. F5 show that our model is able to effectively
predict future action classes for EK-55 and EGTEA benchmarks respectively.
Failure Cases. We observe that the action boundaries in some cases are not
exactly aligned with the groundtruth even though the class labels are predicted
accurately (See Fig. F2 and Fig. F3). We believe this could be because the
visual information pertaining to the information is limited or negligible towards
the beginning and end of the action instance.

Most classification errors result from the model getting confused among se-
mantically similar classes. Some such cases from our examples are ‘take ladle’
and ‘pick-up ladle’ in Fig. F4(b)); ‘close sandwich’ and ‘close hamburger’ in
Fig. F4(d)); ‘put seasoning’ and ‘pour seasoning’ in Fig. F5(a)).

Moreover, our model sometimes misses rare actions during predictions such
as ‘pour oil’ in Fig F4(a) and ‘close fridge’ in Fig. F5(b).

Additionally, we also observe that having seen certain objects in the observed
video, the model predicts objects that are likely to co-occur with the seen ob-
jects. See the scenario in Fig. F3(d). The model doesn’t predict ‘cut cheese’ and
‘place cheese into bowl’ after the action ‘place cucumber into bowl’ and instead
predicts cut tomato and ‘place tomato into bowl’. While the prediction is not
correct for this specific activity, it is still a reasonable sequence of actions as
there are several other salad recipe videos in the dataset that only use cucum-
ber and tomato. In another scenario in Fig. F5(b), having seen ‘pasta’ in the
observed video, the model anticipates action classes with ‘cheese’ noun. While

10 M. Nawhal et al.

Table T9. Ablation: Set correspondence (Breakfast & 50Salads). We report
the mean over classes accuracy for different observation/anticipation durations. Higher
values indicate better performance.

Method βo → 20% 30%

βa → 10% 20% 30% 50% 10% 20% 30% 50%

Breakfast Hungarian 36.8 32.0 30.5 28.4 39.2 35.4 31.9 29.6
Greedy 37.4 32.0 30.3 28.6 39.9 35.7 32.1 29.4

50Salads Hungarian 41.3 35.1 27.4 26.8 42.9 42.0 28.4 23.8
Greedy 41.1 35.0 27.6 27.3 42.8 42.3 28.5 23.6

Table T10. Ablation: Set correspondence (EK-55 & EGTEA+). We report
mAP values for all classes, frequent classes (> 100 action instances) and rare
class (< 10 action instances). Following [7], we report the mAP values averaged over
different observation durations. Higher values implies better performance.

Method EK-55 EGTEA+

All Freq Rare All Freq Rare

Hungarian 39.0 58.4 28.4 76.7 83.5 55.0
Greedy 39.1 58.1 29.1 76.8 83.3 55.1

‘cheese’ does not appear in this particular video, it is a reasonable prediction
since the nouns ‘pasta’ and ‘cheese’ often appear together in activity videos in
this dataset.

A.4 Additional Discussion

In this work, we demonstrate the effectiveness of our model on minutes-long ac-
tivity videos. Handling longer videos with durations in hours or days (common in
surveillance or monitoring scenarios) would be interesting future work. Further-
more, our approach assumes that the videos have an overall context provided
by the ongoing long-term activity. We show that modeling interactions among
segments (and, in turn, segment-level representation) is an effective technique
for such activity videos as the video segments are indeed related. However, such
approaches cannot tackle videos that are just a montage of several unrelated
content like videos containing clips from different movies. Our approach focuses
on activity videos where contextual information is present and relevant for action
anticipation.

Rethinking Learning Approaches for Long-Term Action Anticipation 11

Ground truth

Predictions

Observed
Frames

Ground truth

Predictions

Observed
Frames

(a) (b)

Ground truth

Predictions

Observed
Frames

Ground truth

Predictions

Observed
Frames

(c) (d)

Fig. F2. Visualizations (Breakfast). Examples from Breakfast dataset for the case
where observation duration is 20% of the video duration and anticipation duration
involves predicting actions for 50% of the remaining video.

Ground truth

Predictions

Observed
Frames

Ground truth

Predictions

Observed
Frames

(a) (b)

Ground truth

Predictions

Observed
Frames

Ground truth

Predictions

Observed
Frames

(c) (d)

Fig. F3. Visualizations (50Salads). Examples from 50Salads dataset for the case
where observation duration is 20% of the video duration and anticipation duration
involves predicting actions for 50% of the remaining video.

12 M. Nawhal et al.

pour oil
take pan
put-down spoon
put-down fork
take pan

turn-off stove
put-down pan
put egg
lift pan

mix sauce
lift pot
put pasta
take ladle
pick-up ladle
stir pasta

mix sauce
lift pot
put spoon
put fork
put cheese

(a)

pour oil
take pan
put-down spoon
put-down fork
take pan

turn-off stove
put-down pan
put egg
lift pan

mix sauce
lift pot
put pasta
take ladle
pick-up ladle
stir pasta

mix sauce
lift pot
put spoon
put fork
put cheese

(b)

serve jambalaya
serve food
take fork
pick-up fork
put-down fork
move pot

put sausage
put cheese
put tomato
close sandwich
close hamburger
put-down tongs

(c)

serve jambalaya
serve food
take fork
pick-up fork
put-down fork
move pot

put sausage
put cheese
put tomato
close sandwich
close hamburger
put-down tongs

(d)

Fig. F4. Visualizations (EK-55). Examples from Epic-Kitchens-55 dataset for the
case where observation duration is 50% of the video duration. We show the predicted
action classes in the visualization – classes in green color are correct predictions, classes
in red color are wrong predictions, and classes in gray color are missed classes.

Rethinking Learning Approaches for Long-Term Action Anticipation 13

mix pasta
put condiment
take condiment-container
put seasoning
pour seasoning
take bowl
move-around pot
put pasta
pour pasta

take bell-pepper
mix bell-pepper
take oil-container
put pot
cut tomato
put cheese
mix cheese
mix seasoning

(a)

put cheese
close fridge
put patty
put lettuce
take lettuce

take condiment-container
take cheese
put tomato
squeeze sandwich
move-around patty

(b)

Fig. F5. Visualizations (EGTEA+). Examples from EGTEA Gaze+ dataset for
the case where 50% of the video is observed. We show the predicted action classes in
the visualization – classes in green color are correct predictions, classes in red color are
wrong predictions, and classes in gray color are missed classes.

14 M. Nawhal et al.

References

1. https://github.com/yabufarha/ms-tcn
2. https://bitbucket.org/doneata/fv4a/src/master/
3. https://github.com/facebookresearch/ego-topo
4. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.:

End-to-end object detection with transformers. In: Proceedings of the European
Conference on Computer Vision (ECCV) (2020)

5. Kim, B., Lee, J., Kang, J., Kim, E.S., Kim, H.J.: Hotr: End-to-end human-object
interaction detection with transformers. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2021)

6. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization (2017)
7. Nagarajan, T., Li, Y., Feichtenhofer, C., Grauman, K.: Ego-topo: Environment

affordances from egocentric video. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2020)

8. Nawhal, M., Mori, G.: Activity graph transformer for temporal action localization.
arXiv preprint arXiv:2101.08540 (2021)

9. Sener, F., Singhania, D., Yao, A.: Temporal aggregate representations for long-
range video understanding. In: Proceedings of the European Conference on Com-
puter Vision (ECCV) (2020)

10. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information
Processing Systems (NIPS) (2017)

