
An End-to-end Moving Camera Background Model
——————

Supplemental Material

Guy Erez1[0000−0002−4545−6664], Ron Shapira Weber1[0000−0003−4579−0678], and Oren
Freifeld1[0000−0001−9816−9709]

Ben-Gurion University of the Negev, Be’er Sheva, Israel
{ergu,ronsha}@post.bgu.ac.il, orenfr@cs.bgu.ac.il

Abstract. The supplemental material includes, in addition to this document, se-
lect examples of videos showing the results of our method next to the orig-
inal videos. Additionally, and due to space limits, additional visual compar-
isons between the different methods (using PDF presentations so it be will
easy to browse back and forth between the frames) are available at https:
//github.com/BGU-CS-VIL/DeepMCBM.

As for this document, it contains the following:

1. A comparison of ROC curves of different methods on various videos. These
curves correspond to the AUC values reported in Table 1 in the paper.

2. A demonstration of DeepMCBM’s capability of predicting the background
in previously-unseen misaligned frames from the video it was trained on (a
capability lacking in most other methods, except JA-POLS [4]).

3. The details of the robust error functions that we used.

4. The technical details of the evaluation procedures.

5. The technical details of the architecture and training process.

6. An explanation how, in the affine Spatial Transformer Net, the invertibility of
the affine transformations is guaranteed via the matrix exponential.

https://github.com/BGU-CS-VIL/DeepMCBM
https://github.com/BGU-CS-VIL/DeepMCBM

2 Erez et al.

A Deep Moving-camera Background Model 3

1 ROC Curves (Related to the Values from Table 1 in the Paper)

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

tennis

Ours (CAE/Aff)
Ours (Basic/Aff)
Ours (CAE/H)
Ours (Basic/H)
JA-POLS
PCP_PTI
PRPCA
DECOLOR
PRAC
PanGAEA

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

flamingo

Ours (CAE/Aff)
Ours (Basic/Aff)
Ours (CAE/H)
Ours (Basic/H)
JA-POLS
PCP_PTI
DECOLOR
PRPCA
PRAC
PanGAEA

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

continuousPan

PCP_PTI
DECOLOR
PRAC
Ours (CAE/Aff)
Ours (Basic/Aff)
Ours (CAE/H)
Ours (Basic/H)
JA-POLS

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

dog-gooses

Ours (CAE/Aff)
Ours (Basic/Aff)
Ours (CAE/H)
Ours (Basic/H)
JA-POLS
PCP_PTI
PRPCA
DECOLOR
PRAC
PanGAEA

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

bmx-trees

Ours (CAE/Aff)
Ours (Basic/Aff)
Ours (CAE/H)
Ours (Basic/H)
JA-POLS
PCP_PTI
PRPCA
DECOLOR
PRAC
PanGAEA

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

stunt

Ours (CAE/Aff)
Ours (Basic/Aff)
Ours (CAE/H)
Ours (Basic/H)
JA-POLS
PCP_PTI
PRPCA
DECOLOR
PRAC
PanGAEA

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

zoomInZoomOut

Ours (CAE/Aff)
Ours (Basic/Aff)
Ours (CAE/H)
Ours (Basic/H)
PCP_PTI
PRPCA
DECOLOR
PRAC
PanGAEA

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

horsejump-high

Ours (CAE/Aff)
Ours (Basic/Aff)
Ours (CAE/H)
Ours (Basic/H)
JA-POLS
PCP_PTI
PRPCA
DECOLOR
PRAC
PanGAEA

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

sidewalk

JA-POLS
PCP_PTI
PRPCA
DECOLOR
PRAC
Ours (CAE/Aff)
Ours (Basic/Aff)
Ours (CAE/H)
Ours (Basic/H)
PanGAEA

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

stroller

PCP_PTI
PRPCA
DECOLOR
PRAC
Ours (CAE/Aff)
Ours (Basic/Aff)
Ours (CAE/H)
Ours (Basic/H)
PanGAEA
JA-POLS

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

boxing-fisheye

PRAC
PRPCA
DECOLOR
PCP_PTI
JA-POLS
Ours (Basic/H)
Ours (CAE/H)
Ours (Basic/Aff)
Ours (CAE/Aff)
PanGAEA

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

swing

JA-POLS
PCP_PTI
PRPCA
DECOLOR
PRAC
Ours (CAE/H)
Ours (Basic/H)
Ours (CAE/Aff)
Ours (Basic/Aff)
PanGAEA

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

breakdance-flare

Ours (CAE/Aff)
Ours (Basic/Aff)
Ours (CAE/H)
Ours (Basic/H)
JA-POLS
PCP_PTI
PRPCA
DECOLOR
PRAC
PanGAEA

Fig. 1: A comparison of ROC curves of different methods on various videos. Note that
sometimes some curves coincide (e.g., our CAE/Aff and CAE/Hom on the flamingo

video).

4 Erez et al.

2 Predicting Background to Previously-unseen Misaligned Frames

In the paper, our comparison of DeepMCBM to the other methods focused on their own
playground: i.e., given an input sequence of video frames, the task was viewed as an
optimization problem whose overarching goal is to estimate the background in those
frames. However, like JA-POLS [4] but unlike the other competitors, DeepMCBM, being
based on (unsupervised) learning, also possesses a generalization capability in the sense
it can estimate the background in previously-unseen misaligned frames from the video it
was trained on. In contrast, other methods (JA-POLS excluded), do not have a readily-
available mechanism that enables them to receive such misaligned frames and predict
their alignment and background estimation – at least not without solving additional
optimization steps. Note that in a static camera background model this is a non-issue
since, by definition, the frames (both train and test) are always aligned; however, in the
moving-camera case the situation is different due to the misalignment. Remark: Note
that this generalization capability should not be confused with an online-learning setting
– which some competitors aim for – where each time the next consecutive frame arrives
their model is being updated (using further optimization).

To showcase the generalization capability, in each of the “tennis” and “flamingo”
sequences (from [10]) we partitioned the video sequence into train and test sets. We did
it by letting the test set (in each of the two videos) consist of 10% of the frames (chosen
at random from the original sequence) while letting the train test consist of the remaining
90% of the frames. In each video we let both DeepMCBM and its competitor, JA-
POLS, train only on the train set. Next, we evaluated the models, using their prediction
functionalities, on the test sets. Figure 2 and Table 1 summarize the results in terms of
the corresponding ROC curve and AUC scores, respectively, and show that DeepMCBM
outperforms JA-POLS in this type of evaluation as well. Note that here we intentionally
used our CAE/Aff variant (and not CAE/Hom) to highlight the fact that even when using
the same transformation type as JA-POLS (i.e., affine), DeepMCBM beats the latter.

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

flamingo

Ours (CAE/Aff)
JA-POLS

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

tennis

Ours (CAE/Aff)
JA-POLS

Fig. 2: A typical comparison of ROC curves, between the proposed method and
JA-POLS [4], of the performance on test sets.

A Deep Moving-camera Background Model 5

Sequence DeepMCBM JA-POLS [4]
tennis test 0.944 0.923
tennis train 0.965 0.936
flamingo test 0.957 0.949
flamingo train 0.980 0.949

Table 1: AUC scores for test and train sets. DeepMCBM in its CAE+Affine version

3 The Robust Error Functions

We have used the smoothed ℓ1 loss (which is closely-related to Huber’s function [3]) for
ρJA and Geman-McClure’s error function [5] for ρrecon:

ρJA(ε;β) =

{
0.5ε2/β if |ε| ≤ β

|ε| − 0.5β otherwise
ρrecon(ε; s) =

ε2

ε2 + s2
(1)

where in all of our experiments we used β = 0.35 and s = 0.05.

4 Evaluation Details

In this section we explain how the ROC curves and AUC scores were obtained.
Given an input sequence of N frames, (fn)Nn=1, ground-truth annotations of fore-

ground pixels, (an)Nn=1, and a background estimation sequence, (f̂n)Nn=1, we compute
the pixelwise squared error (En)Nn=1, where En

x = 1
C

∑C
c=1(f

n
x,c − f̂n

x,c)
2 is the error

in pixel x ∈ Ω (recall that Ω, a rectangle of height h and width w, was defined in the
paper as the common domain of the original input frames), averaged across C channels.
To have a unified comparison measure applicable in all videos and for all methods, we
scale to the [0, 1] interval where the scaling is done (for the method under consideration)
w.r.t. the entire video sequence. That is, we define the scaled error of that method in the
specific video as

Ẽn
x =

En
x −minn,x′(En

x′)

maxn,x′(En
x′)−minn,x′(En

x′)
. (2)

Next, for each threshold value α (from a discrete set of evenly-spaced points between 0
and 1) we computed the True Positive Rate (TPR) and False Positive Rate (FPR):

TPR =
1

N · h · w

N∑
n=1

∑
x∈Ω

1(ax = 1 ∧ Ẽn
x ≥ α) ; (3)

FPR =
1

N · h · w

N∑
n=1

∑
x∈Ω

1(ax = 0 ∧ Ẽn
x ≥ α) . (4)

6 Erez et al.

Computing the TPR and FPR for multiple threshold values lets us obtain the Receiver
Operating Characteristic (ROC) curve for this (method,sequence) pair. Figure 1 shows the
resulted ROC curves while Area Under the (ROC) Curve (AUC) scores are summarized
in Table 1 in the paper.

5 Architecture and Training Details

DeepMCBM’s pipeline consists of two main parts:

1. a Spatial Transformer Net (STN);
2. a Conditional Autoencoder (CAE).

First, an STN is trained to learn an input-dependent function, that predicts the transfor-
mation parameter vector θ. These predictions are used to create the panoramic central
moments as well as, later, to unwarp those moments back towards the input image. Once
the STN training process has converged, the STN module is frozen and the CAE is
trained to learn a background model in the input domain, where the conditioning is on
the aforementioned unwapred moments. Below we describe the architecture and training
details of the STN and CAE modules.

5.1 The STN

The STN we used consisted of a backbone and tailored regression heads for each
available transformation type (in our case, either affine of homographies). The backbone
we used was ResNet18 [6] whose output size was 1000. Each regression head consisted
of two dense layers of size 1000 × 32 and 32 × d, where d is the dimension of the
transformation parameters vector θ (d = 6 for affine transformations and d = 8 for
homographies). In both the regressor heads we used a ReLU [1] activation function.
In all our experiments, we trained the backbone and the Affine head for the first 3000
epochs. In the variants that used homographies, we first did repeat the process above (that
is, 3000 epochs for training the backbone and the affine head) and then switched to train
the homographic head for additional 3000 epochs (recall that our affine transformations
are invertible and that such transformations are a particular case of homographies; thus,
the results from the affine head provide a good initialization for the homographic head).
Thus, in total, the STN module was trained for about 6000 epochs with a step learning
rate scheduler, decreasing the learning rate every 1000 epochs with an initial learning
rate of 0.005.

5.2 The CAE

The second module in the DeepMCBM pipeline is a CAE, conditioned on the unwarped
panoramic central moments. In our experiments, we conditioned the CAE on the first
two such moments, but more generally, any number of moments can be used as well.
Theoretically, using more moments implies that the distribution of the pixel stack is
better captured.

A Deep Moving-camera Background Model 7

Our CAE was based on the (unconditional) Autoencoder from [2]. Using a similar
architecture, we used 4 channels in each hidden convolutional layer and 2 channels for
the last convolutional layer. In between the convolutional encoder and decoder we used
dense layers of size 256× 4 and 4× 256 (thus, the code size was 4) with a ReLU [1]
activation function. All convolutional layers used a 5× 5 kernel with stride size 2.

Our conditioning is done in both the encoder and decoder parts. As the conditioning
(the unwarped central moments) is in the same spatial dimensions as the input image,
conditioning on the encoder size was done by a simple concatenation, along the channel
dimension, of the input and the unwarped moments. This results in (Nmoments + 1) · C
input channels for the encoder where Nmoments is the number of the moments used
(Nmoments = 2 in our experiments) and C is the number of channels of an input image
(C = 3 in the RGB case). To condition the decoder, we concatenate the unwaped
moments to the (classic) decoder output and then use a small Convolutional Neural Net
(CNN) to integrate the decoder’s output and the conditioning. This last CNN is composed
of 3 convolutional layers with 50 channels for the hidden layesr and C channels for the
output layer. All three layers use a 3× 3 kernel, and a ReLU [1] activation function.

Using the robust reconstruction loss mentioned in the paper, we trained the CAE
for 2000 epochs with a learning rate scheduler and a step size of 500 epochs and initial
learning rate of 0.001.

6 Using the Matrix Exponential within an STN

Let A be a 3× 3 real-valued matrix such that its last row is all zeros:

A =

A1 A2 A3

A4 A5 A6

0 0 0

 . (5)

Then, a known result (which is also widely-used in computer vision; see, e.g., [8,9])
from the theory of matrix groups is that

T ≜ exp(A) (6)

(i.e., the matrix exponential of A) has the following form,

T =

T1 T2 T3

T4 T5 T6

0 0 1

 (7)

where, in addition, we have that detT > 0 (in particular, T is invertible). Consequently,
the matrix exponential provides a mapping from the unconstrained linear space R6

into the Affine Group (namely, the space of invertible affine transformations – in this
case from R2 to R2). Taken together with the fact that the matrix exponential is a
differentiable function, this means that an STN [7] can be easily set to produce only
invertible transformations [11,4].

8 Erez et al.

References

1. Agarap, A.F.: Deep learning using rectified linear units (relu). arXiv preprint
arXiv:1803.08375 (2018) 6, 7

2. Ballé, J., Laparra, V., Simoncelli, E.P.: End-to-end optimized image compression. In: ICLR
(2017) 7

3. Black, M.J., Rangarajan, A.: On the unification of line processes, outlier rejection, and robust
statistics with applications in early vision. IJCV (1996) 5

4. Chelly, I., Winter, V., Litvak, D., Rosen, D., Freifeld, O.: JA-POLS: a moving-camera back-
ground model via joint alignment and partially-overlapping local subspaces. In: CVPR (2020)
1, 4, 5, 7

5. Geman, S., McClure, D.E.: Statistical methods for tomographic image reconstruction. In:
BISI (1987) 5

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition. pp. 770–778 (2016)
6

7. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: NIPS
(2015) 7

8. Lin, D., Grimson, E., Fisher III, J.: Learning visual flows: A Lie algebraic approach. In: CVPR
(2009) 7

9. Lin, D., Grimson, E., Fisher III, J.: Modeling and estimating persistent motion with geometric
flows. In: CVPR (2010) 7

10. Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.:
A benchmark dataset and evaluation methodology for video object segmentation. In: CVPR
(2016) 4

11. Skafte Detlefsen, N., Freifeld, O., Hauberg, S.: Deep diffeomorphic transformer networks. In:
CVPR (2018) 7

	An End-to-end Moving Camera Background Model ——————Supplemental Material

