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Table 1. Performance comparison in audio-visual synchronization metrics, LSE-D
(lower is better) and LSE-C (higher is better) in multi-speaker independent setting
on GRID corpus

Method LSE-D(↓) LSE-C(↑)
GAN-based [13] 8.318 4.607

Vocoder-based [8] 7.884 4.349

Lip2Wav [10] 7.103 6.441

VV-Memory [6] 7.227 6.146

End-to-end GAN [9] 7.006 6.112

Proposed model 6.955 6.475

Table 2. Performance comparison in 4-speaker (s1, s2, s4, s29) dependent setting on
GRID corpus

Method STOI ESTOI PESQ

GAN-based [13] 0.565 0.318 1.483

Vocoder-based [8] 0.648 0.447 1.626

Lip2Wav [10] 0.649 0.469 1.678

VV-Memory [6] 0.652 0.476 1.792

End-to-end GAN [9] 0.647 0.436 1.691

Proposed model 0.668 0.541 1.855

1 Additional quantitative results

1.1 Speech content recognition performance

We verify the speech content recognition performance using audio-visual syn-
chronization rate of the generated speech with the input lip sequences. We adopt
Lip Sync Error-Distance (LSE-D) and Lip Sync Error-Coinfidence(LSE-C) met-
rics from [11]. LSE-D denotes a matching distance between audio and video that
the lower LSE-D corresponds to the higher audio-visual match, i.e., the speech
and lip movements are in sync, and LSE-C refers to the average confidence score
that the lower confidence score denotes that there are several completely out-
of-sync parts. Table 1 shows the performance of the results on multi-speaker
independent setting in GRID corpus dataset. The proposed framework outper-
forms the previous work, attaining 6.955 LSE-D and 6.475 LSE-C.
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Table 3. Analysis on different number of speech selective masks in multi-speaker
independent setting on GRID dataset

Metric N=1 N=3 N=6 N=9

STOI 0.556 0.540 0.567 0.561

ESTOI 0.291 0.304 0.308 0.260

PESQ 1.360 1.368 1.373 1.372

Table 4. Performance comparison in multi-speaker independent setting on LRW

Method STOI ESTOI PESQ

Lip2Wav (w/o speaker embedding) [10] 0.375 0.026 1.198

Lip2Wav (w/ speaker embedding) [10] 0.511 0.301 1.260

VV-Memory [6] 0.548 0.264 1.256

Proposed model 0.555 0.305 1.264

1.2 Results in GRID corpus: 4-speaker dependent setting

We additionally conduct the experiment on 4-speaker setting of the GRID dataset,
where subject 1, 2, 4, and 29 are trained together. This setting is generally uti-
lized in the early studies [7–9,13]. Table 2 indicates the comparison results with
the previous methods [7–10, 13]. The proposed framework outperforms all the
early works by achieving 0.668, 0.541, and 1.855, on STOI, ESTOI, and PESQ,
respectively.

1.3 Results in LRW: multi-speaker independent setting

We compare the performacne of our model in multi-speaker independent (un-
seen) setting of LRW dataset with the previous works [6,10]. Since Lip2Wav [11]
utilizes additional speaker information and feed a speaker embeddings input to
the model in both training and testing, we conduct experiment using Lip2Wav
model with and without speaker embedding information for fair comparison.
Clearly, Lip2Wav does not perform well without speaker embedding. Table 4
verifies that our model outperforms all previous works [6,10], showing even bet-
ter performance than Lip2Wav with speaker embedding.

1.4 Effectiveness of multi-heads

Furthermore, we check the performance by differing the number of heads in the
multi-speaker independent (unseen) setting on GRID corpus dataset. As shown
in Table 3, our model achieves 0.556 STOI, 0.291 ESTOI, and 1.360 PESQ
when using the single speech selective mask. It attains the best performance
when utilizing 6 speech selective mask, obtaining the score of 0.567, 0.308, and
1.373 on STOI, ESTOI, and PESQ, respectively. When the number of masks
increases to 9, the performances slightly decrease to 0.561 STOI, 0.260 ESTOI,
and 1.372 PESQ, meaning that the performances saturates when the sufficient
number of speech selective masks are provided. The proposed model achieves the
best performances with 9 speech selective masks on the multi-speaker dependent
setting (Table 6 in the manuscript). Compared to the performances on the multi-
speaker dependent setting, we can assume that the number of speech selective
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Fig. 1. Additional visualization examples of generated mel-spectrogram from GRID
corpus and TCD-TIMIT volunteer datasets in speaker-independent settings
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Fig. 2. Additional qualitative results of the ground truth and the generated mel-
spectrogram by changing the reference speaking-style features of subject ids

masks depend on the number of speakers, since the multi-speaker dependent
setting uses total 33 speakers in training where the independent setting utilizes
much less number of speakers. This means that 6 speech selective masks are
enough to contain diverse characteristics of different subjects for multi-speaker
independent (unseen) setting.

2 Additional qualitative results

2.1 Results in multi-speaker independent setting

Fig. 1 shows the additional visualization examples of generated mel-spectrogram
from GRID corpus and TCD-TIMIT volunteer datasets in multi-speaker inde-
pendent settings where unseen speakers are taken in the inference time. We also
provide a GRID demo for both multi-speaker independent and multi-speaker
dependent settings in demo independent.mp4 and demo dependent.mp4,
respectively, and LRW demo in demo independent lrw.mp4. The demo firstly
shows the silent input video. Then, the ground truth video, the generated audio
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Fig. 3. Examples of visualization of attribution maps using GRID corpus test dataset.
Red is the most attributed region, and blue is the least attributed region.

from the previous work, and the generated audio from our proposed method are
shown with the input video. The demo clearly indicates that the generated audio
samples from the proposed model shows reasonable and correct sounds, while
the previous method fails to pronounce the perfectly correct letters and do not
match voices. We write in red on letters with the wrong sounds in the actual
transcription at the bottom of the demo video screen.

2.2 Results altering the visage-styles

We demonstrate extra examples of the synthesized mel-spectrogram by chang-
ing the visage-style features of subject ids in multi-speaker independent set-
ting. Fig. 2 shows the results of the generated mel-spectrograms with 3 differ-
ent visage-style features, which are originally from subject id 4, 13, 25, 31 of
the GRID corpus dataset, respectively. We further provide a demo for cross-
speaker setting in demo altering visage styles.mp4. The demo firstly shows
the ground truth video. Then, the simplified scheme of generating speech from
the actual subejct’s speech content and visage-style is shown, and the generated
audio samples from the actual subject’s speech content fsc and the visage-styles
s∗’s from 3 different subjects are demonstrated sequentially. The results clearly
show that when adopting the visage-style from other subject identity, the audio
speech well mimics voice of the input visage style while maintaining the content
of the speech. This verifies that the proposed speech-visage feature selection
module can separate the speech content and the identity from the input silent
video, and the VS-synthesizer is able to reconstruct the speech given the speech
content and the visage style features.

2.3 Visualization of each visage-style feature

To explore each visage-style feature, we utilize Grad-CAM [12] and visualize at-
tribution maps by activating each s1, s2, and s3 independently while suppressing
others. Using GRID test dataset of multi-speaker independent setting, we attain
attribution maps of the last convolution layer in the visual encoder with acti-
vating each visage-style feature. Fig. 3 indicates that each visage-style feature,
s1, s2, or s3, sees different part of the face, meaning that each style feature is
affected by different facial attributes.
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3 LRW subject id generation

we clustered and labeled speaker information of a large-scale unconstrained
audio-visual dataset, LRW [2]. Then, we split the train and test set without
speaker overlapping to distinguish from the original splits of the dataset. Specif-
ically, the speaker id of the LRW is labeled with similar pipeline of [1]: feature
extraction, clustering, face verification and identification, and manual correction.

Firstly, we employ a powerful face recognition system, ArcFace [3], to repre-
sent the speaker feature of a video. With ResNet-101 [5] model pre-trained on
MS-Celeb-1M [4], 5 frames of each video from the LRW are randomly selected
for feature extraction. Then, the video-level speaker representation is obtained
by averaging that of 5 frames embedded through the pre-trained face recognition
model.

With the obtained video-level speaker representations, we cluster speakers
through face identification between videos and clusters. If the cosine similarity
between a given video and all clusters is lower than a threshold, a new cluster
is created for the video. Otherwise, the video is assigned to a cluster that corre-
sponds to the highest similarity. The speaker feature representing the cluster is
updated with a new assigned video.

Next, face verification and identification are performed. Due to the imper-
fection of clustering algorithms, having false positive samples are inevitable. To
minimize the error, we should remove the false positive samples that different
speakers are assigned to one cluster. To this end, face verification is performed
between all samples in a cluster. Then, face identification is proceeded between
clusters to deal with the multiple clusters of one speaker that should be merged.
To represent the cluster-level speaker feature, the video-level speaker represen-
tations of all videos in the cluster are averaged. Each cluster is compared with
the other clusters, and it is merged with multiple top similarity clusters above a
threshold. Finally, manual correction is performed for existing multiple clusters
that should be merged.

Total 17, 580 subjects are labeled, 17, 560 for training, 20 for validation,
and 20 for testing. Each split contain same about of class, 500. The number
of videos are 480, 378, 29, 918, and 29, 923 for training, validation, and testing,
respectively. We provide the train, validation, and test splits in LRW train.txt,
LRW val.txt, and LRW test.txt, respectively. The txt files contain subject id
with the location of the following video. The detailed explanation of the dataset
is described in https://github.com/ms-dot-k/LRW_ID.

4 Architectural details

In this section, we describe the detailed architecture of each module in the pro-
posed method. The architectures of visual encoder ΦV E , visage-style encoder
ΦV S , VS-synthesizer ΨV S , visual-id classifier φv, audio-id classifier φa, discrimi-
nator, and postnet are illustrated in Table 5, 6, 7, 8, 9, 10, and 11, respectively.
For the ResBlock, we denote the first convolution layer only, and the second con-
volution layer is omitted (It has the same filter size and number with stride 1).

https://github.com/ms-dot-k/LRW_ID
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The stride 2 in ResBlock of the generators indicates upsample; otherwise, it rep-
resents downsample. Moreover, the output size of mel-spectrogram is represented
with 80 mel-spectral dimension. When converting audio to the mel-spectrogram,
we use window size of 800 and hop size of 160 for 25fps videos, and window size
of 532 and hop size of 133 for 30fps videos, in order to make the length of the
mel-spectrogram 4 times longer than that of the video frames.

Table 5. Architecture of visual encoder

Visual Encoder: input size T × H × W × C

Layer Filter size / number / stride Output dimensions

Conv 3D 5 × 7 × 7 / 64 / [1, 2, 2] T × H
2

× W
2

× 64

Max Pool 3D 1 × 3 × 3 / - / [1, 2, 2] T × H
4

× W
4

× 64

ResBlock 2D 3 × 3 / 64 / [1, 1] T × H
4

× W
4

× 64

ResBlock 2D 3 × 3 / 64 / [1, 1] T × H
4

× W
4

× 64

ResBlock 2D 3 × 3 / 128 / [2, 2] T × H
8

× W
8

× 128

ResBlock 2D 3 × 3 / 128 / [1, 1] T × H
8

× W
8

× 128

ResBlock 2D 3 × 3 / 256 / [2, 2] T × H
16

× W
16

× 256

ResBlock 2D 3 × 3 / 256 / [1, 1] T × H
16

× W
16

× 256

ResBlock 2D 3 × 3 / 512 / [2, 2] T × H
32

× W
32

× 512

ResBlock 2D 3 × 3 / 512 / [1, 1] T × H
32

× W
32

× 512

Avg Pool 2D - T × 512
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Table 6. Architecture of visage-style encoder

Visage-Style Encoder: input size T × C

Style Layer Hidden dim Output dimensions

s1, s2, s3 Bi-GRU 512 T × 1024

s1, s2, s3 Linear 1024 × 512 T × 512

s1 Avg Pool - 1 × 512

s2, s3 Linear 512 × 256 T × 256

s2 Avg Pool - 1 × 256

s3 Linear 256 × 128 T × 128

s3 Avg Pool - 1 × 128

Table 7. Architecture of VS-synthesizer

Generator: input size 20 × T × (D+128)

Layer Filter size / number / stride Output dimensions Norm

ResBlock 2D 5 × 5 / 256 / [1, 1] 20 × T × 512 -

ResBlock 2D 5 × 5 / 256 / [1, 1] 20 × T × 256 -

ResBlock 2D 5 × 5 / 256 / [1, 1] 20 × T × 256 -

ResBlock 2D 3 × 3 / 128 / [1, 1] 20 × T × 128 AdaIN (s1)

ResBlock 2D 3 × 3 / 128 / [1, 1] 20 × T × 128 AdaIN (s1)

ResBlock 2D 3 × 3 / 128 / [1, 1] 20 × T × 128 AdaIN (s1)

ResBlock 2D 3 × 3 / 64 / [2, 2] 40 × 2T × 64 AdaIN (s2)

ResBlock 2D 3 × 3 / 64 / [1, 1] 40 × 2T × 64 AdaIN (s2)

ResBlock 2D 3 × 3 / 64 / [1, 1] 40 × 2T × 64 AdaIN (s2)

ResBlock 2D 3 × 3 / 32 / [2, 2] 80 × 4T × 32 AdaIN (s3)

ResBlock 2D 3 × 3 / 32 / [1, 1] 80 × 4T × 32 AdaIN (s3)

ResBlock 2D 3 × 3 / 32 / [1, 1] 80 × 4T × 32 AdaIN (s3)

Conv 2D 1 × 1 / 1 / [1, 1] 80 × 4T × 1

Table 8. Architecture of visual-id classifier

Visual identity classifier: input size 1 × 128

Layer Hidden dim Output dimensions

Linear 128 × 128 1 × 128

Linear 128 × 64 1 × 64

Linear 64 × 64 1 × 64

Linear 64 × Num class 1 × Num class
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Table 9. Architecture of audio-id classifier

Audio identity Encoder: input size 80 × 4T × 1

Layer Filter size / number / stride Output dimensions

Conv 2D 3 × 3 / 128 / [2, 2] 40 × 2T × 128

Conv 2D 3 × 3 / 256 / [2, 2] 20 × T × 256

ResBlock 2D 3 × 3 / 256 / [1, 1] 20 × T × 256

Reshape - T × 20 * 256

Linear 256 * 20 × 512 T × 512

Conv 1D 3 / 512 / [1, 1] T × 512

Conv 1D 4 / 256 / [2, 2] T
2
× 256

Conv 1D 4 / 256 / [2, 2] T
4
× 256

Avg Pool - 1 × 256

Linear 256 × 128 1 × 128

Linear 128 × 64 1 × 64

Linear 64 × Num class 1 × Num class

Table 10. Architecture of discriminator

Discriminator: input size 80 × 4T × 1

Condition Layer Filter size / number / stride Output dimensions

C&UC

ResBlock 2D 5 × 5 / 32 / [2, 2] 40 × T
2
× 32

ResBlock 2D 5 × 5 / 64 / [2, 2] 20 × T
4
× 64

ResBlock 2D 5 × 5 / 128 / [2, 2] 10 × T
8
× 128

ResBlock 2D 5 × 5 / 256 / [2, 2] 5 × T
16

× 256

Conv 2D 5 × 5 / 256 / [1, 1] 1 × T
16
-4 × 256

C
Avg Pool 2D - 256

Linear 1 1

UC

Cat w/ s3 - 5 × T
16

× (256 + 128)

Conv 2D 5 × 5 / 256 / [1, 1] 5 × T
16

× 256

Conv 2D 5 × 5 / 256 / [1, 1] 1 × T
16
-4 × 256

Avg Pool 2D - 256

Linear 1 1

Table 11. Architecture of postnet

Postnet: input size 80 × 4T, F: size of FFT

Layer Filter size / number / stride Output dimensions

Conv 1D 7 / 128 / 1 128 × 4T

ResBlock 1D 5 / 256 / 1 256 × 4T

ResBlock 1D 5 / 256 / 1 256 × 4T

ResBlock 1D 5 / 256 / 1 256 × 4T

Conv 1D 1 / F / 1 F × 4T
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