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A Additional Pre-training Implementation Detalils

We report the default pre-training setting in Table 1. The learning rate fol-
lows the linear scaling rule [10]: Ir = base_lr x batchsize/256. The number of
non-masked tokens given to the encoder is set to 49 when using a single input
modality (mask ratio of 3/4), and 98 when using 2 or 3 modalities (mask ratio of
3/4 and 5/6, respectively). Furthermore, given that the semantic segmentation
map consists of 64-dimensional class embeddings, naively projecting each patch
to a token is computationally expensive (when flattened, each patch would have
a dimension of 16384 and the projection layer would have approx. 12M parame-
ters). To make this projection efficient while keeping the number of segmentation
patches constant, we downsample the semantic segmentation input by a factor
of 4 and use patches of size 4x4.

MultiMAE Decoder. We illustrate the MultiMAE decoder in Fig 1. Follow-
ing MAE [12], each decoder has a linear projection layer to adapt the outputs
from the encoder to the decoder dimension. After this linear projection, we add
both sine-cosine positional embeddings and learned modality embeddings to the
decoder inputs. This is then followed by a cross-attention layer, a MLP, and two
Transformer blocks.

*Equal contribution
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Fig.1: MultiMAE decoders: Tokens from the MultiMAE encoder are first linearly
projected to the decoder dimension, after which positional and modality-specific em-
beddings are added. A cross-attention step integrates information from tokens of other
modalities before applying an MLP and two Transformer blocks. Finally, each token is
projected and reshaped to form an image. In this illustration, each token expands into
four pixels.

B Transfer Implementation Details

B.1 ImageNet Classification Fine-tuning Setting

For TmageNet-1K [3] classification, we follow the end-to-end fine-tuning proce-
dure from MAE [12] and replace the decoders by an average pooling operation
over all encoded tokens, followed by LayerNorm [2] and a linear projection. The
default setting is shown in Table 2.

B.2 Semantic Segmentation

The typical approach [3, 12] to fine-tuning Vision Transformers for semantic
segmentation is not suited for multi-modal inputs in two aspects: 1) the seg-
mentation head and 2) the evaluation procedure. We cover these two aspects
next and propose a simplified fine-tuning setting for semantic segmentation to
overcome these issues.

Segmentation Head. The UPerNet [31] head used in BEiT [3] and MAE [12]
operates on a feature pyramid [19]. While a Vision Transformer operating only
on RGB images can be modified to return hierarchical feature maps through
the use of deconvolution layers on intermediate features [35], this procedure is
not so simple when the input is multi-modal. In contrast, segmentation heads
that operate only on the output tokens do not have this issue. One such head is
the Segmenter [28], for which tokens are passed through additional Transformer
blocks, then reshaped into a feature map and upsampled to full resolution. How-
ever, the direct upsampling can result in inprecise segmentation maps and hurt
performance. Instead, we propose using a simple segmentation head based on
the ConvNeXt architecture [20]. First, we increase the dimensionality D of the
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Table 1: Default pre-training set- Table 2: ImageNet-1K classification
ting. For ablations, the number of setting. We follow the fine-tuning set-
epochs is set to 400. For best results, the tings from MAE [12]

number of epochs is set to 1600

Hyperparameters ‘Value
Hyperparameters ‘Value Optimizer AdamW [27]
Optimizer AdamW [22] Base learning rate [10]|5e-4
Base learning rate [10]|le-4 Weight decay 0.05
Weight decay 0.05 Adam 3 (0.9, 0.999)
Adam S (0.9, 0.95) Layer-wise Ir decay [7]]0.65
Batch size 2048 Batch size 1024
Learning rate sched. |Cosine decay [21] Learning rate sched. |Cosine decay [21]
Training epochs 400 or 1600 Training epochs 100
Warmup learning rate |le-6 Warmup learning rate |1e-6
Warmup epochs 40 Warmup epochs 5
Non-masked tokens 98 Input resolution 224 x 224
Sampling « 1.0 Augmentation RandAugment(9, 0.5)
Task weighting None (equal weights) La'bel smoothing 0.1

Mixup [34] 0.8
Input resolution 224 x 224 Cutmix [32] 1.0
Augmentation RandomResizedCrop Drop path [16] 0.1

Table 3: Comparison of semantic segmentation heads. We report the mloU (1)
on ADE20K [36], Hypersim [26] and NYUv2 [27]. The proposed segmentation head
based on the ConvNeXt [20] architecture performs on average slightly better than
Segmenter [23]

Method  Head ADE20K Hypersim NYUv2

MultiMAE Segmenter-Mask [28]  46.3 36.0 49.0
MultiMAE ConvNeXt 46.2 37.0 52.0

output tokens wih a linear projection, and then reshape the tokens to form a
feature map of size H/4 x W/4 x D /8. We then apply 4 ConvNeXt blocks on this
feature map before upsampling it to full resolution using bilinear interpolation.
We find that this simple ConvNeXt head outperforms Segmenter, as shown in
Table 3. To adapt this head to multi-modal inputs, we can either select only the
output tokens from a single modality (as information from other modalities gets
passed to these tokens through self-attention) or concatenate tokens from dif-
ferent modalities. We find that both approaches perform comparably and select
the former as it is slightly more efficient.

Evaluation Procedure. Vision Transformers are commonly evaluated using
the sliding window procedure from MMSegmentation [23] (e.g., [4,35,37]). This
procedure involves first resizing the validation images so that the smallest side
matches the training resolution®, and then applying a sliding window over the
resized image and averaging predictions across windows. However, this procedure
is not suitable if the input modalities rely on statistics from the entire image (e.g.,

*In some implementations, the height is resized to the training resolution, which
most often coincides with the smallest side.
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Table 4: Semantic segmentation fine-tuning settings for ADE20K [306], Hyper-
sim [26] and NYUv2 [27]
Hyperparameters ‘ADEQOK Hypersim NYUv2
Optimizer AdamW [22]
Learning rate le-4
Layer-wise Ir decay [7] 0.75
Weight decay 0.05
Adam S8 (0.9, 0.999)
Batch size 16 16 8
Learning rate sched. Cosine decay [21]
Training epochs 64 25 200
Warmup learning rate le-6
Warmup epochs 1
Input resolution 512 x 512 512 x 512 640 x 640
Augmentation Large scale jittering (LSJ) [9]
Color jitter v
Drop path [16] 0.1

standardized depth) or do not have a 2D structure (e.g., object bounding boxes).
Therefore, we use a simpler evaluation procedure inspired by [18], which consists
of resizing the image so that the largest side matches the training resolution and
padding the smallest side. As the evaluated images have a smaller resolution,
this simple procedure results in slightly worse reported performance compared to
sliding windows. However, it can be used regardless of the input modalities and
thus allows for a more fair comparison of segmentation performance for different
modalities.

Training Details. The semantic segmentation transfer settings for all three
segmentation datasets are shown in Table 4. Following [I8], our main aug-
mentation is large scale jittering (LSJ) [9]. We also apply color jittering with
the following parameters: brightness=0.4, contrast=0.4, saturation=0.2,
hue=0.1, p=0.5.

B.3 NYUv2 Depth Estimation

For depth estimation on the NYUv2 dataset. [27], we resize all images from
640 x 480 to 341 x 256. During training, we randomly crop the images to
256 x 256 and during testing, we take a central crop of size 256 x 256.

We follow [11,17] and apply color jittering with the following parameters:
brightness=0.1255, contrast=0.4, saturation=0.5, hue=0.2, p=0.5. We
also randomly turn the image into gray-scale with probability p = 0.3.

We use the DPT [25] head to decode layers [3,6,9,12] of the ViT-B encoder
into the dense depth map. For training, we use the reverse Huber loss [17].
Detailed transfer settings are given in Table 5. For evaluation, we measure the &;
metric on the test set, showing the percentage of pixels p with error maX{Z—i, z—i
less than 1.25.
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Table 5: Fine-tuning settings for NYUv2 [27] depth estimation and eight Taskon-
omy [33] 2D regression tasks

Hyperparameters ‘ NYUv2 depth Taskonomy tasks
Optimizer AdamW [22]
Learning rate le-4 3e-4
Layer-wise Ir decay [7] 0.75

Weight decay le-4 5e-2
Adam B (0.9, 0.999)

Batch size 128 32
Learning rate sched. Cosine decay [21]
Training epochs 2000 100
Warmup learning rate le-6

Warmup epochs 100 5
Input resolution 256 x 256 384 x 384
RandomCrop v X
Color jitter v X
Drop path [16] X 0.1

B.4 Taskonomy Dense Regression Tasks

We transfer to the following eight dense regression tasks from the Taskonomy [33]
dataset: Principal curvature, z-buffer depth, texture edges, occlusion edges, 2D
keypoints, 8D keypoints, surface normals, and reshading. We train the transfers
on a random subset of the Taskonomy-tiny split, selecting 800 training and 200
validation images. The test evaluation is performed on the entire Taskonomy-
tiny test split (54514 images), using the checkpoint with the lowest validation
loss.

For training and testing, all images are resized to 384 x 384 and we perform no
further augmentations. As for NYUv2 [27] depth estimation, we use the DPT [25]
head, accessing layers [3,6,9,12] from the ViT-B encoder. All tasks are trained
with an L1 loss. Detailed transfer settings are given in Table 5.

C Mask Sampling Strategies

We sample the number of non-masked tokens per modality using a Dirichlet
distribution with concentration parameter a = 1. Figure 2 illustrates the sam-
pling behavior under different « values. For simplicity, we picked o = 1 for all
our experiments in the main paper, which exposes the models to a large diver-
sity of masks. Samples using a = 1 include cases where all tokens are sampled
from a single modality (very low «) and MultiMAE has to fully reconstruct the
other two, cases where all modalities are equally represented (very high «), and
everything in between.

In Table 6, we show transfer results on ImageNet-1K [3] classification and
ADE20K [36] semantic segmentation using MultiMAE models trained with « €
{0.2,0.5,1.0,00}. By a = oo, we denote always sampling an equal number of
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Fig. 2: Multi-modal mask sampling: We sample the proportion of tokens per
modality using a symmetric Dirichlet distribution Dir(«) with concentration parame-
ter a. We illustrate here the sampling behavior for different choices of a values when
selecting nine tokens from three modalities. Each row represents one sample of tokens.
With small a;, most tokens will be sampled from single modalities, while large o values
result in equal representation of each modality. Setting o = 1 is equivalent to sampling
uniformly over the support and results in a more diverse sampling behavior.

Table 6: Comparison of mask sampling strategies. We report RGB-only trans-
fers to ImageNet-1K [8] classification and ADE20K [36] semantic segmentation using
MultiMAEs pre-trained with different Dirichlet concentration parameter c. All models
were trained for 400 epochs and do not use the additional per-patch-standardized RGB
decoder (see Sec. 3.4 in main paper). By a = co we denote always sampling an equal
number of visible tokens for each task

a ImageNet-1K [8] ADE20K [36]

0.2 82.7 44.6
0.5 82.5 44.8
1.0 82.8 45.1
o0 82.9 42.9

tokens from each modality. All models in this table were trained for 400 epochs
and do not include the additional per-patch-standardized RGB head (see Sec.
3.4 in the main paper). Setting a = 1 performs best on ADE20K, while being
close second on ImageNet-1K behind o = oco. Smaller values of a do not perform
better on these two RGB-only downstream tasks, even though during training
they were exposed to more samples that contain tokens from only one modality.
Biasing the sampling towards modalities that will be used during transfer is an
interesting future direction.
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D Detailed Taskonomy Transfer Results

Table 4 in the main paper compared several baselines by their average rank on
eight different Taskonomy [33] downstream tasks. In this section, we show per-
task results of all these baselines. Table 7 shows detailed results for the ablation
on the choice of MultiMAE pre-training tasks, while Table 8 shows results for
the comparison to single-task and multi-task baselines.

Out of these eight Taskonomy tasks, the edges and 2D-keypoints task labels
were originally created from RGB images, while the other tasks were rendered
from the scanned scene mesh. A pre-training scheme that includes depth should
thus transfer better to the depth-related tasks, such as surface normals. Indeed,
we observe this in Table 7, where MultiMAE pre-trained using depth transfer
better than MAE or the RGB-S MultiMAE. Importantly, additionally includ-
ing semantic segmentation along RGB and in the pre-training does not
degrade performance on these tasks.

In Table 8, we see that MultiMAE performs similarly to the single-task
RGB—D baseline that was trained using full RGB inputs. For the single and
multi-task baselines, the right choice of pre-training task(s) is crucial, as for ex-
ample the RGB—S baselines performs consistently worse than the ones including

, as well as the MultiMAE RGB-S baseline from Table 7.

Table 7: Taskonomy transfer results using MultiMAE models pre-trained on a
varying number of modalities, where the pre-training modalities are the same as
the target tasks. Downstream transfers are trained from RGB-only. All models were pre-
trained for 400 epochs. We report L1 losses ({) and indicate with bold and underline
the best and second-best results, respectively

Method Curvature Depth Edges Occlusion 2D-keypoints 3D-keypoints Normals Reshading|Average Average

(-10%) (-10%) (-10%) (-10%) (-10%) (-10%) (-10%)  (-10) loss (-10%) rank
MAE (D2) 4.455 3.651 4.608 6.237 2.736 4.585 6.189  1.120 3.828 3.75
RGB- 4.249  3.378 4.031  6.608 2.440 4.447 6.094  1.051 3.646  2.125
RGB-S 4276 3.406 3.868 5.939 2.615 4.467 6.139  1.067 3.678  2.625
RGB-D-S  4.236 3.340 5290 5.924 2.590 4.432 6.086 1.040 | 3.639 1.5

Table 8: Taskonomy transfer results comparing pre-trained single-task and multi-
task baselines (pre-trained using non-masked RGB-only inputs) against the RGB-D-S
MultiMAE. Downstream transfers are trained from RGB-only. All models were pre-
trained for 400 epochs. We report L1 losses (}) and indicate with bold and underline
the best and second-best results, respectively

Method Curvature Depth Edges Occlusion 2D-keypoints 3D-keypoints Normals Reshading|Average = Average

(-10%) (-10%) (-10%) (-10%) (-10%) (-10%) (-10%)  (-10) loss (-10%) rank
RGB—D  4.251 3.222 7.038 5.914  2.790 4.458 5.960 1.013 3.602  1.625
RGB—S  4.314 3.666 7.206 6.051 3.029 4.595 6.843  1.155 3.973 4
RGB—D-S 4.266 3.465 6.745 5.949 2.899 4.510 6.264  1.080 3.759 2.875

MultiMAE 4.236 3.340 5.290 5.924 2.590 4.432 6.086 1.040 3.639 1.5
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E Robustness Evaluation on ImageNet

We study the robustness of the ImageNet [3] fine-tuned models by evaluating
them on four different ImageNet-like validation sets [13—15,30] that contain var-
ious domain-shifts and corruptions, and we show the results in Table 9. To that
end, we directly use the models that were fine-tuned on ImageNet-1K classifica-
tion, and evaluate them without any modifications on the respective robustness
evaluation datasets. MultiMAE performs better than all baselines of the same
model size (ViT-B) on ImageNet-R and ImageNet-S. It also performs better
than MAE on ImageNet-C, but falls behind DINO [5] and MoCo-v3 [6]. On
ImageNet-A, MultiMAE performs worse than DINO and MAE, but better than
the supervised and MoCo-v3 baselines.

Table 9: Robustness evaluation on ImageNet variants from RGB-only. We report
the top-1 accuracy on the IN-1K validation split, as well as robustness evaluations on

IN-Adversarial [15], IN-Corruption [14] (mean corruption error), IN-Rendition [13], as
well as IN-Sketch [30]

Method IN-1K 1 IN-A 1 IN-C | IN-R 1 IN-S 1

Supervised [20] S81.8  24.2 49.7 435 314

DINO [5] 83.1 35.5 45.5 481 354

MoCo-v3 [0] 82.8 33.2 46.2 484 35.6

MAE [12] 83.3 351 516 493 355

MultiMAE 83.3 339 491 50.5 37.1

F Comparison of MAE Variants

In Section 4.2 in the main paper, we compare MultiMAE to a pre-trained MAE
with a decoder of depth 8, following the best-performing setting described in [12].
However, as our MultiMAE uses shallower and narrower decoders, we also pre-
train MAE with a decoder of similar depth (2) and width (256). We compare
these two MAE versions in Table 10. We find that while these two models perform
comparably on ImageNet-1K classification, as reported in [12], using a deeper
decoder leads to a stark increase in performance for all other tasks. Given the
benefits of a larger decoder for MAE, it stands to reason that MultiMAE could
also benefit from using wider and deeper decoders, even though that would
significantly increase pre-training time.

Furthermore, it has been observed that MAE models pre-trained using the
official PyTorch [24] implementation (such as ours) do not exactly match the
results of a MAE trained using the original (and unavailable) TensorFlow [1]
implementation’. Therefore, we also report results using model weights from the

YA discussion about the reproducibility issues of MAE can be found at:
https://github.com/facebookresearch /mae/issues/30
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TensorFlow implementation to assess the impact of the codebase on transfer
performance. We observe minor differences in transfer performance, with the
original TensorFlow implementation slightly outperforming the PyTorch imple-
mentation on all tasks.

Table 10: Comparison of MAE Variants. We report the top-1 accuracy (1) on
ImageNet-1K [8] (IN-1K) classification (C), mIoU (1) on ADE20K [36], Hypersim [26],
and NYUv2 [27] semantic segmentation (S), as well as §; accuracy (1) on NYUv2 depth
(D). Text in bold and underline indicates the first and second-best results, respectively.
All models are pre-trained for 1600 epochs. D2 = Decoder of depth 2 and width 256.
D8 = Decoder of depth 8 and width 512

Method IN-1K (C) ADE20K (S) Hypersim (S) NYUv2 (S) NYUv2 (D)
MAE (D2, PyTorch) 83.3 43.3 34.1 46.9 83.7
MAE (D8, PyTorch) 83.3 46.2 36.5 50.1 85.1
MAE (D8, TensorFlow) — 83.6 46.5 37.1 50.9 85.4

G Comparison of Pre-training Time

We report the pre-training epoch time in Table 11. By using shallow decoders,
the training time of MultiMAE is comparable to MAE (with a decoder of depth
8) despite having twice the amount of unmasked tokens and multiple decoders.
Note that removing masked tokens from the encoder, as proposed by MAE, is
crucial in enabling pre-training on multiple dense modalities.

Table 11: Pre-training time comparison. Pre-training epoch time for MAE [12]
and MultiMAE on ImageNet-1K [8]. We train with 8 Nvidia A100 GPUs and use
PyTorch with automatic mixed precision enabled. D2 = Decoder of depth 2 and width
256. D8 = Decoder of depth 8 and width 512. w/ [M] = Mask tokens also given to the
ViT-B encoder

Method Encoder Num. unmasked Epoch time (mins)
MAE (D2) ViT-B 49 2.7
MAE (D8) ViT-B 49 5.0
MultiMAE ViT-B 98 6.0

MultiMAE, w/ [M] ViT-B 98 43.3
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H Additional Visualizations

Figure 3 shows MultiMAE for varying number of visible patches and highlights
the robustness of the model with respect to masking ratios far from the training
mask ratio. Figure 4 shows more visualizations on ImageNet-1K [3] validation
set images. For all examples, 98 visible patches were sampled using Dirichlet
concentration parameter a« = 1. Figure 5 further shows predictions where we
sample three random masks for each image.

Masked Predictions Masked Predictions Masked Predictions

Original inputs inputs inputs

=4

RGB

Depth

Semantic

1/12(~8%) 1/6 (~17%) 1/3(~33%)
(training density)

Fig. 3: MultiMAE predictions for a varying number of visible patches. The
predictions are plausible even when given half the number of patches seen during pre-
training, and the reconstruction quality improves as the number of visible patches
increases. An interactive visualization is available on our website.
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Fig.4: MultiMAE predictions on ImageNet-1K validation set samples. 98
visible patches were sampled using Dirichlet concentration parameter o = 1.
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Fig.5: MultiMAE predictions on ImageNet-1K validation set samples. 98
visible patches were sampled using Dirichlet concentration parameter a = 1. For each
image, we sample three random masks.
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