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A Metaparameter choice

In this study we use two metaparameters (detection model and tracking maximum
age) out of several that we considered initially. These two metaparameters were
chosen because (i) they represent 83% of the opportunity gap conferred by all
the metaparameters considered together (see below) and (ii) a limited number
of metaparameters allows computing the Octopus dataset on more scenarios.
I. Metaparameters we did not use:
• Detection confidence threshold: sets the minimum confidence score of
bounding-box predictions to be used by the tracker.
• Minimum matching tracker IOU: sets the minimum bounding-box IOU
(Intersection-Over-Union) that the SORT tracker [2] requires to perform obstacle
association across frames.
• Tracking re-initialization frequency: specifies every how many frames
detection is run to update the tracker. When detection is not run, the SORT
tracker falls back on a Kalman filter to linearly extrapolate existing bounding
box movement. This option bypasses the detection inference latency, but quickly
incurs significant error.

The additional metaparameter ranges are:

1 # Additional Metaparameters

2 detection-confidence = {0.4, 0.6, 0.7}

3 minimum-matching-tracker-IOU = {0.1, 0.2, 0.3}

4 Tracker-re-initialization-frequency = {1, 2, 3}

Listing 1.2: Values for the other metaparameters.

II. The relative contribution of the two metaparameters we use. The
new metaparameter cartesian product (Listing 1.2) is of size 6 ⇤ 3 ⇤ 3 ⇤ 3 ⇤ 3 = 486
configurations. Due to computational constraints, we create a version of the
Octopus dataset using 49 training and 23 test scenarios from the Waymo dataset,
with ⌧ = 1s.
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Table 5: Metaparameter contribution to the opportunity gap. The top row
shows the score of the global-best policy where no metaparameter changes. Each row
below shows the score of the optimal dynamic policy as one additional metaparameter
is allowed to change. The incremental score increase is shown on the right.

Dynamic

metaparameters

S-MOTA

score

Score

increase

None (global best policy) 24.0 -

+Detection Model 28.3 4.3

+Tracking maximum age 30.1 1.8

+Tracking re-init frequency 30.5 0.4

+Tracking minimum IOU 31.0 0.5

+Detection confidence threshold 31.3 0.3

Table 5 shows the relative contribution of each metaparameter to the score
opportunity gap (§3.3) between the baseline global best policy and the optimal
dynamic policy. The first two metaparameters (detection model and tracking
maximum age) are used in our study and achieve 83% ((30.1�24.0)/(31.3�24.0))
of the opportunity gap conferred by using all 5 metaparameters. We leave
investigation into optimizing the rest of the metaparameters for future work.

B Training details

During training, we exclude video segments with no ground truth labels, where
the MOTA score [22] is undefined. Then, at test time, we impute the global static
configuration computed over the training dataset. We clip the regression targets
to [-100, 100] (i.e., ✏ = 100 in Eq. (2)). In our evaluation setup we consider an
IOU of 0.4 between a prediction and ground truth to be a true positive. We
train the models and evaluate using this schema. We use a single GPU (instead
of 3 used in Waymo) for evaluation on the Argoverse dataset, because the high
framerate would require over 7 GPUs to support executing detection in parallel
on every frame.

C Training hyperparameters

The training hyperparameters used in training the regression and classification
models are shown in Table 6.

Table 6: Training Hyperparameters.

Method
Max Tree

Depth

Max #

of Features

# of

Estimators

Min Impurity

Decrease

Regression 20 18 400 0.000186

Classification (Joint) 8 3 400 0.000285

Classification (Independent) 7 4 200 0.000529



20 G.-E. Sela et al.

The rest of the hyperparameters are the default used in Scikit-Learn v0.23.2.

D S-MOTA vs S-MOTP

In this work, we demonstrate that environment context can be leveraged to
perform test-time optimization of tracking in streaming settings. Unlike other
perception tasks (e.g. detection [26]), where a single optimization metric is
commonly used, in multi-object tracking there is no consensus on the best
metric [7,20]. Therefore, in this study we chose to optimize MOTA [22], as it is
the metric that most closely aligns with human perception of tracking quality [13].

Nevertheless, a battery of other tracking metrics is presented in the evalu-
ation §5.2. The main results (Table 3) show that the S-MOTA-optimal policy
deteriorates in S-MOTP, and that our learned policy does the same in the Argo-
verse dataset. This occurs because MOTA and MOTP are designed to describe
fundamentally different properties in tracking [22]: Whereas MOTA equally bal-
ances precision, recall and identification, MOTP only focuses on precise obstacle
localization. Indeed, Table 7 empirically confirms the conflict between these
metrics. The S-MOTP-optimal policy achieves a far lower S-MOTA score (23.0)
than a policy that optimizes directly for S-MOTA (31.2), and vice versa for
S-MOTP (75.6 and 71.0, respectively). The conflict between the S-MOTA and
S-MOTP scores can be illustrated as a pareto frontier in Figure 7 (generated by
linearly interpolating these metrics).

To further visualize the different strategies needed to maximize each metric,
we compare the decision frequency of the S-MOTA-optimal and S-MOTP-optimal
policies (Figure 8). As shown, the S-MOTP-optimal policy concentrates on the
fastest-models (D3, D4) and on a max-age value of 1, whereas the S-MOTA-
optimal policy’s decisions are much more spread out. This takes place because
these models maximize predicted obstacle localization precision by minimizing
prediction lag after the moving ground-truth. The low max-age minimizes error
from SORT’s Kalman filter (data not shown). Using weaker models with a low
max-age, however, incurs a higher rate of false-negatives and ID-switches, which
reduces S-MOTA (Table 7). We leave further investigation for future work.

Table 7: Evaluating dynamic policies that optimize S-MOTA and S-MOTP.
Method S-MOTA" S-MOTP" S-FP# S-FN# S-IDsw#

S-MOTA-optimal 31.2 71.0 28907 590847 6997

S-MOTP-optimal 23.0 75.6 31468 640261 9424

E Study-case video

A video of the study case presented in §5.3 is attached with the supplemen-
tary material (study-case.mp4). Bounding box and ID annotations are added,
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Fig. 7: The pareto frontier of opti-
mal S-MOTA vs. S-MOTP optimiz-
ing policies. The S-MOTA (x-axis) and
S-MOTP (y-axis) of optimal policies with
gradually varying weights (blue curve)
from S-MOTP to S-MOTA.

Fig. 8: Different policy strategies
are needed to optimize S-MOTA
and S-MOTP. The configuration choice
frequency (color intensity) of S-MOTA-
optimal policy (left) and of the S-MOTP-
optimal policy (right).

matching the color schema of the line-plot that shows the S-MOTA scores of the
different policies.

The 10-12 second mark in the video illustrates a large difference between the
Octopus policy (green) and the global best policy (black). This difference occurs
because the Octopus policy successfully tracks obstacles adjacent to the road on
the left and even more on the right that the global best policy does not.

F t-SNE visualization

Fig. 9: MOTA and S-MOTA responses in different regions of the t-SNE
plot, with video-segment visualization. This figure illustrates the following: (i)
The t-SNE figures presented in Fig. 5 (ii) Three line-plot quartets, illustrating the
MOTA and S-MOTA response (y-axis) of nearby points in the figure to detection model
size (x-axis), (iii) A visualization of a representative scenario for each quartet.
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We present an expanded analysis of the t-SNE plot in §5.3. The figure is
presented again in Figure 9 with more annotations.
Proximity in score space. Three distinct regions in the t-SNE plot are selected
and marked with red rectangles in Figure 9. Four points, representing four 1-
second video segments, are selected in each region. The MOTA and S-MOTA
scores (y-axis) of increasing detection model size (x-axis) are plotted for these
scenarios, following the same methodology as Figure 1b and Figure 2 in §1. The
y-axis ticks and scale are omitted to emphasize that nearby video segments have
similar, normalized, MOTA and S-MOTA response to the metaparameters. These
scenarios, therefore, also tend to be optimized by the same metaparameter values.
Case studies. We perform an in-depth analysis of a video segment selected from
each of the three regions indicated in red in Figure 9.

Bottom-left: Turning in difficult conditions. The ego-vehicle turns left into
a highway. Larger models cannot detect the parked cars in the background,
and therefore do not boost offline MOTA over smaller models. At the same
time, vehicle turning induces high obstacle-displacement in the frame, causing
accuracy deterioration from higher inference latency. This scene is both very
difficult (minimal offline MOTA boost from bigger models) and fast (high accuracy
deterioration).

Bottom-right: Slow movement towards partially-occluded vehicles. Stronger
models better detect the partially-occluded parked vehicles. The slow ego-vehicle
movement towards non-moving obstacles induces minimal obstacle-displacement
and therefore negligible accuracy degradation.

Top-right: A mix of still and moving obstacles. The vehicle is standing at
an intersection. Still or parked cars on the road are mixed with fast-moving
pedestrians. The intermediate-size models, EfficientDet-D5 and D6, detect most
of the still obstacles and are able to keep up with the fast-moving pedestrians.
Larger models (EfficientDet-D7 and D7x), however, introduce too much inference
runtime delay in tracking the moving pedestrians, and sustain more severe
accuracy deterioration as a result.

Taken together, these examples illustrate that the environment context can
be used to infer MOTA and S-MOTA response to the metaparameters. This then
enables test-time S-MOTA optimization by dynamically tuning the metaparame-
ters.

G Full Centroid Visualization

Full score space clustering analysis. The clustering analysis discussed in §5.3
(Figure 6) is extended to all eight centroids, shown in Figure 10. Several clusters
present similar, though slightly shifted behavior, to the ones presented in the body
of the paper. For example, cluster centroids 1, 5, and 8 represent environments
with varying S-MOTA response to increasing latency. This demonstrates that the
performance penalty (degradation) may occur at different stages as the model
size increases. Clusters 3, 4, and 6 show similar improvement in S-MOTA with
larger models, though in cluster 6, the performance drops for the two largest
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Fig. 10: All eight centroids in the clustering analysis performed in §5.3.

models, i.e., EfficientDet-D7 and D7x. These models’ predictions are evaluated 3
frames away from the ground truth, whereas the rest of the models are evaluated
up to 2 frames away. This may raise the possibility that the increase in frame
gap from the ground truth causes a more significant degradation to S-MOTA in
cluster 4 if it contains faster moving scenes than cluster 6.
Cluster scenario visualization. Curated videos of several of the clusters’ video
segments are attached to the supplementary material (cluster-{4, 7, 8}.mp4)
The cluster numbers correspond to the centroid number plotted in Fig. 10.

When comparing clusters 4 and 8, we observe a clear trend: (i) video segments
with a preference for larger models (cluster 4) show more subdued obstacle
displacement from the ego vehicle camera’s perspective and (ii) the opposite in
video segments with preference for smaller models (cluster 8).

In cluster 7, a lower tracking maximum age has better performance. Here,
we observe video segments with two primary modes of obstacle behavior: (i)
occlusions or obstacles leaving the scene, and (ii) very fast obstacle movement,
where the IoU of the obstacle to its previous location is small, causing SORT [2]
to do an ID switch. In both cases, maintaining the old tracklets for a shorter
amount of time reduces false positives and improves performance.

These observations illustrate the idea that visible properties of the environment
context may be leveraged to discern the mode of metaparameter score behavior.
These properties are used as features in Octopus to optimize S-MOTA at test
time.

H Ranking Implementation Ablations

We conduct an ablation study of the experimental setup and the design choices.
Baseline subtraction. As a variance reduction technique, we consider regressing
over the relative score improvement from hglobal instead of absolute scores as
described in 4.1. Thus, we avoid dedicating model capacity to learn environment
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“difficulty” properties, which apply to all configurations in a manner that does
not change their score order. As this distinction is not relevant for predicting
configuration order, it only introduces noise to the downstream ranking task [35].
Accordingly, in Table 8, we observe a 0.3 point decrease in S-MOTA score on the
Waymo dataset when baseline subtraction is ablated.
Classification vs. regression. We compare the regress-then-rank approach
described in §4.1 against the classification formulation (using Random Forests).
This approach directly predicts the metaparameter values of the best config-
uration from the environment features using m classifiers for each of the m
metaparameters. In Table 8 we show the resulting score in "classification (joint)",
indicating a reduced score compared to regression with baseline subtraction.
Independent vs. joint metaparameter optimization. We examine the de-
gree of independence between metaparameter choices in the optimization process.
To this end, we consider a new setting "classification (independent)" in Table 8.
This is done by separately learning to predict the value of each metaparameter,
while holding the other metaparameter values constant (in essence assuming
convexity). We show that joint classification performs 0.4 S-MOTA points better
than independent.

Table 8: Comparing configuration ranking approaches
Method S-MOTA" S-MOTP" S-FN# S-FP# S-IDsw#

Regression w/ baseline subtraction 27.9 72.3 31489 608870 8966

Regression w/o baseline subtraction 27.6 72.5 31405 610617 8982

Classification (independent) 27.2 72.9 32725 615537 9326

Classification (joint) 27.6 72.7 35107 611196 8829

I Policy Design Using Neural Networks

The key idea in this study is that the environment context can be leveraged to
optimize streaming tracking accuracy at test time. The Octopus policy model
presented is implemented using engineered features and random forest regression.
A natural question is whether the policy performance can be improved using
deep neural networks. To this end, we evaluated policy design that incorporates
a conventional, convolutional neural network (CNN) [10] as well. We found that
performance is on par with the global best policy, much worse than the solution
using engineered features (see Table 9). In order to get good performance, we
believe that the model needs to predict features at the granularity of instance-level
motion (e.g. instance-flow [38]) because the tracking score that is being predicted
is defined at this granularity. We believe that the model does not get good score
because it does not capture these features well. Further investigation is needed.
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I.1 Methodology

We use a ResNet50 backbone [10] that takes as input the middle frame of each
1-second video segment and classifies the best configuration using a new MLP.
The backbone is pretrained using QDTrack [27] on the BDD100k dataset [36]
(QDTrack’s zero-shot accuracy on Waymo is 40.3, on par with the optimal policy
score in offline settings). The backbone output is average-pooled and fed to an
MLP of width of 256 with one hidden layer. The MLP output is fed into separate
linear layers that generate the logits for each metaparameter in order to separately
classify the values of the optimal configuration. This follows the methodology
described in Appendix H. The model is trained using the cross-entropy loss on
the Waymo dataset, using the methodology described in §5.1. The logits are
initialized with a small bias so that the model behaves like the global best policy
at the start of training. The model is trained using AdamW [19] with a learning
rate of 1e-4 and weight decay of 0.01 for 10 epochs.

I.2 Results

The results are shown in Table 9. The CNN achieves negligible performance
improvement over the global best policy.

Table 9: Neural-network based policy performance
Method S-MOTA" S-MOTP" S-FP# S-FN# S-IDsw#

Global best 25.1 72.2 33616 633159 11212

Neural network based policy 25.2 72.3 45658 611827 8056

J Faster hardware simulation

Hardware performance is expected to improve over time. We therefore evaluate
Octopus on faster hardware execution by simulating 50% faster inference of the
detection model measured on the V100 GPU. We repeat the evaluation on the
Argoverse dataset described in §5.2, showing the results in Table 10. The results
show that the Octopus policy with closed-loop prediction outperforms the global
best static policy by 2.8 S-MOTA, up from the 1.7 S-MOTA result using the
V100 GPU latency readings.
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Table 10: Performance on Argoverse with 50% faster GPU inference
Method S-MOTA" S-MOTP" S-FP# S-FN# S-IDsw#

Global best 54.5 77.3 8508 44965 1173

Optimal 63.7 75.5 6897 36634 649

Optimal from the prev. segment 57.6 75.5 9655 40800 776

Octopus with:

Ground truth from current segment 59.3 75.9 7951 40405 815

Ground truth from prev. segment 57.9 76.3 7988 41553 958

Prediction from prev. segment 57.3 76.4 7911 42489 958
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