
Object Manipulation via Visual Target Localization 19

A Qualitative Results – Sec 5.1

Our qualitative results video showcasing a few of the successful episodes of our
trained agent can be found in the supplementary package. We also provide two
failure examples and discuss the limitations of our trained agent.

B Training Details for the Policy Network – Sec 4.3

We train our models for 20M frames (unless otherwise specified). All the models
share the same visual encoder, three convolutional layers to embed the RGBD
observation. The maximum episode length is 200 frames, and the episode fails
if the agent does not finish the task before the end of the episode. Using AI2-
Thor [24] multi-node training, we render 500 frames per second on 4 machines,
each with 4 Tesla T4 GPUs. We use Adam optimizer with a learning rate of
3e-4 and take gradient steps every 128 frames. We consider two objects being
in proximity if the centers of objects are less than 20cm apart. We train our
conditional segmentation model o✏ine. We use AllenAct [47] framework.

C Training Details for Conditional Segmentation Model
– Sec 4.2

We train our conditional segmentation models for 100 epochs. We use Adam
optimizer with a learning rate of 1e � 4. We initialize the ResNet backbones
with ImageNet pre-trained weights for faster training. Input images and query
images are of size 224x224. We use random crop and flipping the image for data
augmentation during training. We do not use color jittering as we found it to
negatively impact the performance of our model on the validation set.

C.1 Dataset Details.

We also generate a dataset of images from the training scenes to train our seg-
mentation model. Our dataset consists of more than 23K images, including 116K
object masks from 120 scenes (where 80 are used for training, 20 for validation,
and 20 for test sets). We ensure that the validation and test scenes used to train
m-VOLE are not used to train the segmentation model. As explained in Sec-
tion 3, the model requires query images as input. We collect these query images
by taking a crop containing the object of interest from the images of this dataset.
We only use the query images collected from the training scenes of AI2-Thor,
so the instances depicted in the query images do not overlap with the instances
of target objects during inference.



20 K. Ehsani et al.

D Reward Ablation – Sec 4.3

Section 4.3 introduced three additional reward elements that are not used in the
standard ArmPointNav setup. We ablate the performance gain that each com-
ponent brings to our model. This analysis can be useful not only for evaluating
the performance of our method but also for use in future works. Table 6 includes
the results in absence of each of these components. Arm control reward, which
encourages the agent to move its arm close to the target objects, is shown to be
the most important element of the reward and the agent does poorly without
this reward. Getting training o↵ the ground with sparse RL reward for object
manipulation is extremely di�cult, and by motivating the agent to bring its arm
closer to the target object, the training becomes faster and more e�cient.

Exploration Arm Control Object Visibility PU SR SRwD

X - X 0.9 0 0

- X X 47.8 15.4 5.86

X X - 79.4 53.6 30.1

X X X 81.2 59.6 31.0

Table 6. Reward ablations. We investigate the performance of the model in absence
of each reward component. Exploration, arm control, and object visibility refer to
the rewards for visiting a new state, � distance to object and observing the object,
respectively.

E Details of the Memory Model – Sec 4.1

We have two memory modules, the explicit memory storing object locations
and the implicit recurrent network’s memory. The first module, calculates a
weighted average of the previous estimates of the object’s locations. Formally,

d̂O = 1
T (T+1)/2

P
T

t=0 t ⇥ ⌧(d̂t
O
, t, T ), where ⌧(P, i, j) is the transformation of

point P from the agent’s coordinate frame at time i to time j (note that this
transformation can be noisy due to noise in agent’s motion). The output of
this memory, combined with previous visual observations is given to our second
memory module, which is a GRU with a hidden layer of size 512. This recurrent
network implicitly encodes the previous actions, observations, and object and
agent states, and is used to estimate the next action.

F Details of the Noise Models – Sec 5.2

This section provides additional details and visualizations on the noise models
used in Section 5.2.



Object Manipulation via Visual Target Localization 21

F.1 Agent Motion Noise Model

Murali et al. [32], introduced a noise model for agent’s movements and rotation,
capturing the noise in motion for a real robot, the Locobot. We use their noise
model to ablate the impact of the noise in the agent’s movements on our model’s
performance. To better understand how the noise multiplier (the x-axis in Fig-
ure 5 in the main submission) impacts the predicted trajectory, we illustrate a
sample trajectory. Figure 6 shows agent’s groundtruth and predicted trajectory
for di↵erent noise multipliers x = 0.1 � 1. Note that the paths start from the
same initial location, and the predicted paths diverge from the actual trajectory
traversed by the agent as the episode progresses and the errors accumulate.

Fig. 6. Noise in Trajectory. The green path shows the trajectory traversed by the
agent, and the other paths show the estimated trajectory of the agent for a variety of
noise multipliers. Note that even a small noise multiplier x = 0.2 can result in a big
divergence in the trajectories.

F.2 Depth Noise Model

Redwood distortion noise model, introduced in [7], is designed to model the
noise of actual depth sensors (Kinect cameras) with a fixed resolution. This
noise model can act as a proxy to estimate the impact of using a real-world
noisy depth camera.

F.3 How Does Segmentation A↵ect the Final Performance? – Sec
5.3

We compare the performance of our approach using di↵erent segmentation mod-
els in Section 5.3. In this section, we ablate how the performance of the segmen-



22 K. Ehsani et al.

tation model a↵ects the final performance of our approach on the task of Object
Displacement.

Fig. 7. Impact of Partial Masks.

First, we evaluate how the performance on the final task changes if the target
objects are detected correctly, but the mask does not perfectly segment the
observed object. In other words, if we use IoU as a metric for the accuracy of
the segmentation model, how the accuracy of the segmentation network a↵ects
the final performance. For this experiment, at each timestep that the object is
visible, we randomly choose x% of the segmentation mask of the target object to
preserve and remove the rest. Figure 7 plots the change in the final performance
as we increase x. Note that x = 0 presents the ablation where no mask is
provided, and x = 1 is equivalent to providing the groundtruth segmentation
mask. This experiment shows that our network can achieve strong results even
if only 10% of the target object is segmented.

Fig. 8. Impact of Missing Masks.



Object Manipulation via Visual Target Localization 23

We also show that if the segmentation mask of the object is only retrieved
30% of the times, across all the timesteps that the target object is visible, our
network can achieve approximately similar performance as the one using the
ground-truth segmentation mask (Figure 8). For every x on the plot, at each
timestep, we remove the segmentation mask of the target object with the prob-
ability 1 � x and calculate the final performance of the model. Similar to the
previous plot, x = 0 shows the performance when no mask is provided, and
x = 1 is equivalent to the groundtruth segmentation mask.

Fig. 9. Impact of Category Confusion.

One of the other main issues that the segmentation models have is detecting
wrong objects. For instance, as shown in the supplementary video, the segmen-
tation model might segment a pan in the scene while the query object asks for
a pot. Figure 9 shows the final performance of the model for di↵erent rates of
mis-detections. At each timestep, with the probability of x%, instead of the seg-
mentation mask of the target object, we randomly select the segmentation mask
of another object in the scene as the input mask to the model. For instance,
metrics at x = 0.2 show the model’s performance using a segmentation network
that detects a wrong object with the probability of 20%.

The conclusion is that even segmentation models with high precision and low
recall are beneficial for the Object Displacement task.

G Our method (m-VOLE) outperforming ArmPointNav
(APN). – Sec 5.1

APN has access to the exact direction towards the target, so it tends to choose
the direct path towards the goal, which is not necessarily a plausible solution.
For example, as shown in Fig. 10, the red path represents a shorter path, but the
arm collides with other objects if it follows that path. Moreover, we did a further
quantitative analysis to investigate m-VOLE superiority to APN (Tab 7). EpLen



24 K. Ehsani et al.

Coll
isio

n

Fig. 10. m-VOLE vs APN paths towards the target. The red path illustrates
the greedy solution an agent with access to GT direction sensors might take to reach
the bowl (Failing due to collision with the oven).

PU and EpLen Success, respectively, represent episode length for the pickup
stage and the full task. Our analysis shows that these metrics are lower for APN
than m-VOLE. However, the SRwD of APN (success without collision) is lower.
This observation shows that APN is more e�cient in the number of steps (as it
uses the exact direction) but does not handle collisions well.

Model EpLen PU EpLen Success SRwD

ArmPointNav 46.3 78.8 28.5
m-VOLE w/ GT mask 49.3 87.1 31.0

Table 7. m-VOLE vs APN.

H Code and Data

Our code is based on ManipulaTHOR [11] and AllenAct [47]. We use the APND
dataset provided in [11]. The dataset can be downloaded from their website. The
code can be found on the website.

I Limitations

Here, we discuss two main limitations of the work. First, we consider separate
modules for segmentation and depth perception. Hence, their errors have a cas-
cading e↵ect. Another design choice we made was to abstract away grasping.
While this allowed us to focus on other challenging aspects of the problem,
moving beyond simulation will likely require methods to account for real-world
graspers. These are some of our study’s primary limitations, which serve as av-
enues for future work.


