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In this supplement to the main paper we provide implementation details
(Appendix A), additional quantitative and qualitative results (Appendix B), as
well as details on the dataset statistics and construction (Appendix C).

A Additional implementation details

A.1 Training loss details

Detection and Segmentation Losses. Our architecture uses the Mask R-
CNN [3] loss which is composed of losses for the RPN module, part detection
and segmentation losses for each proposed region of interest: LMask R-CNN =
Lrpn + Ldet + Lseg. We refer the reader to the original paper for details on the
implementation of these losses.
Motion Losses. We extend the Mask R-CNN network with extra heads for
motion prediction. To train the motion prediction heads, we add additional
loss terms to the loss associated with each ROI. We construct the motion loss
Lm as a weighted sum of cross-entropy loss for the motion type (Lc), and
smooth L1 losses for regressing the motion axis (La) and motion origin (Lo):
Lm = λcLc + λaLa + λoLo. The motion loss terms for each RoI i are given by:

Lci = LCE(ĉi, ci)

Lai = LsmoothL1(âi, ai)

Loi = LsmoothL1(ôi, oi)1{ci = rotation}
(1)

where ĉi is the predicted motion type and ci is the ground truth motion type,
âi is the predicted axis and ai is the ground truth axis, ôi ∈ R3 is the predicted
origin and oi is the ground truth origin. We set λc = 1, λa = 8, λo = 8 for
our experiments. For OpdRcnn-C, the motion axis and origin are in camera
coordinates. The overall loss is given by LCC = LMask R-CNN +Lm. OpdRcnn-
O has the same additional loss as OpdRcnn-C for motion parameters, but with
additional smooth L1 loss for the extrinsic matrix Lext.

LOC-S = LCC + Lexts = LCC + λextLsmoothL1(ês, es) (2)

We represent the extrinsic matrix as a vector es of length 12 (9 for rotation, 3
for translation). The extrinsic matrix es is predicted by taking the features for
the entire images directly from the backbone network. For OpdRcnn-O, the
motion axis and motion origin are in the canonical object coordinate instead of
the camera coordinate. We set λext = 15 for our experiments.
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A.2 Coordinate system details

We use three coordinate systems in our experiments: i) camera coordinates;
ii) canonical object coordinates (equivalent to world coordinates for synthetic
data); and iii) ANOCs (anistropically-scaled normalized object coordinates), our
adaptation of the normalized object coordinates (NOCs).
Camera Coordinates. Our task is to predict the motion parameters from a
single-view image so camera coordinates are a natural coordinate system. We
evaluate all motion parameters in camera coordinates. The input point clouds for
ANCSH and our OpdPN baseline are also represented in camera coordinates.
Canonical Object Coordinates. Inspired by the canonical coordinates used in
the ANCSH [4] approach. We use canonical object coordinate in our OpdRcnn-
O model to predict the motion axis and motion origin in a more consistent frame
of reference. To obtain a canonical object coordinate frame we either rely on
existing alignments of objects to a canonical pose (for OPDSynth), or annotate
a semantically-consistent oriented bounding box (OBB) with a consistent front
and up axis for each object (for OPDReal).
ANOCs (anistropically-scaled NOCs). The ANOCs coordinate system fur-
ther normalizes the canonical object coordinates. We use the dimensions of the
bounding box of each object to normalize each dimension to [−0.5, 0.5]. This
makes it easier to define the candidate motion origins for the RandMot and
MostFreq baselines.

A.3 OpdPN baseline architecture

The OpdPN baseline uses a PointNet++ [5] architecture to process a single-view
3D point cloud of the object. We use a set of part category labels corresponding
to the openable part types with one additional label representing any other
parts that are not articulated. We also predict an instance segmentation id
to separate part instances. These ids do not have a natural ordering defining
correspondences between parts in different objects in the dataset, so we instead
match the predicted instance id with instances in the ground truth using GIoU [6]
and the Hungarian algorithm. We use a mIoU loss for the part category, instance
id and motion type. For the motion axis and motion origin we use an MSE loss.

A.4 Re-implementation of ANCSH

We re-implemented the ANCSH approach by Li et al. [4] in PyTorch. Table 1
reports the results of our re-implementation against the original reported results.
We see that our re-implementation gives comparable results with the original,
with small variations (performance under some metrics improved while it is
slightly worse along some other metrics). We performed this comparison as a
sanity check experiment to confirm that our re-implementation is consistent with
the results reported by the authors.
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Fig. 1: Network structure for OpdPN. Given the single-view point cloud, the
network predicts part category, instance segmentation, motion type, motion axis
and motion origin. For the part category, the base part of the object is one
category. For other predictions we only consider predicting the moving parts. For
the motion axis and motion origin, we assign the motion to each moving part, and
all points in that moving part have the same ground truth motion type, motion
axis and motion origin. We use GIoU [6] and the Hungarian algorithm to match
part instances from the predictions with the ground truth for the evaluation.

B Additional results

B.1 Part detection and segmentation performance

In Table 2, we report the standard COCO metrics for segmentation including
AP(averaged over IoU 0.50 to 0.95 thresholds at a increment of 0.5), AP50 (for
IoU=0.5), AP75 (for IoU= 0.75). We also report the mean average precision for
part detection over the 2D bounding boxes (APbb, APbb

50, APbb
70). All results

are on the validation set for the pretrained part detector.

B.2 Motion parameter performance by motion type

In Table 3, we present the results using our best model on the OPDSynth test
set. We include a breakdown of the motion parameter estimation by motion type
for translation (t) and rotation (r). Note that the motion origin is only valid for
rotation. Our OpdRcnn-O outperforms OpdRcnn-C in all cases for motion
axis prediction but slightly underperforms for origin prediction.

B.3 Part motion estimation error metrics

We also evaluate motion parameter estimation by computing the angle error for
axis predictions, and normalized distance error for origin predictions following
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Table 1: Comparison between our re-implementation of ANCSH [4] and the
results reported in the original paper on the original eyeglasses dataset.

Part-based Metrics Joint Parameters

Method Rotation Err ↓ Translation Err ↓ 3D IoU % ↑ Angle Err ↓ Distance Err ↓

Li et al. [4] 3.7, 5.1, 3.7 0.035, 0.051, 0.057 87.4, 43.6, 44.5 2.2, 2.3 0.019, 0.014
Our implementation 2.8, 2.8, 3.5 0.039, 0.053, 0.072 87.0, 45.6, 45.5 2.1, 2.5 0.023, 0.024

Table 2: Part detection and segmentation results on the val set. APbb is the mAP
for the 2D bounding box, and AP is the mAP for the instance segmentation.

Detection Segmentation

Input Model APbb APbb
50 APbb

75 AP AP50 AP75

RGB OpdRcnn-C 50.5 74.7 55.5 45.1 67.1 50.2
OpdRcnn-O 50.6 75.3 56.1 45.5 67.9 50.6

D OpdRcnn-C 44.5 69.4 48.2 38.8 60.6 42.0
OpdRcnn-O 44.1 70.5 46.8 38.3 61.3 40.9

RGBD OpdRcnn-C 48.6 73.6 52.5 42.3 65.3 45.7
OpdRcnn-O 47.1 73.3 50.9 41.1 64.0 44.6

prior work [4, 8]. As we noted in the main paper (Section 3.2), these error metrics
are only computed for matched parts, and do not consider that the number of
matched parts may differ between models (e.g., if a model detects only one part
the error metric will only take that part into account). For models that predict
both parts and their motion parameters, predicting more parts may be penalized
for attempting to predict motion parameters of challenging parts.

We consider two ways of computing the error metrics: 1) we compute the
micro-averaged mean of errors for detected parts (with maxDet=100) that are
matched to ground truth parts at IoU of 0.5); and 2) we compute the average error
across different IoU thresholds, different area and different maxDet to determine
the matching between the prediction and GT. In this setting, we compute the
average error for each motion type and then compute the macro-average (across
motion types) to obtain the final average error. We report the error as well as the
average number of matched parts for the two settings for both the OPDSynth
(Tables 4 and 5), and OPDReal (Tables 6 and 7). We find that there is no
noticeable difference between the two settings, and that the micro-averaged error
at IoU=0.5 is reflective of the overall error that sweeps across multiple IoUs.

From Tables 4 and 6, we see that OpdRcnn-C and OpdRcnn-O have
comparable number of matched parts with OpdRcnn-O having lower motion
parameter errors (the trend holds across the different inputs). In contrast, OpdPN
has the lowest axis error but also has fewer matched parts. Because we trained
ANCSH on only one structure (‘one-door’), ANCSH has the lowest number of
matched parts. It also does not predict any motion parameters for the translation
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Table 3: Comparison against baselines on the OPDSynth test set with metrics
broken down by motion type.

Part-averaged mAP % ↑ Motion-averaged mAP % ↑

Input Model PDet +M +MAO MDet +MA +MA (t) +MA (r) +MO (r)

RGBD

RandMot 5.1 1.4 0.2 6.5 0.7 1.0 0.9 0.7
MostFreq 69.4 66.1 27.8 73.6 61.6 61.3 62.4 22.1

OpdRcnn-C 69.6 67.4 41.6 75.4 55.9 57.6 54.9 74.6
OpdRcnn-O 69.4 67.9 49.7 75.3 66.3 65.0 68.6 73.4

D

RandMot 4.8 1.2 0.1 5.7 0.6 0.9 0.8 0.8
MostFreq 66.7 64.1 25.5 69.9 58.5 58.5 59.8 19.4

OpdRcnn-C 67.9 66.6 38.6 72.9 52.7 54.2 52.3 71.9
OpdRcnn-O 66.7 65.0 47.3 71.9 62.3 60.9 65.3 70.7

RGB

RandMot 4.7 1.2 0.1 5.6 0.6 0.8 0.8 0.6
MostFreq 66.0 63.5 27.3 71.8 60.5 61.2 60.3 20.9

OpdRcnn-C 67.2 66.0 38.3 75.3 53.5 56.9 50.7 70.7
OpdRcnn-O 66.0 64.8 46.8 73.9 63.6 65.0 63.2 71.1

Table 4: Error metrics for matched instances for OPDSynth test set (micro-
averaged) with the predicted part matched to the ground-truth at IoU of 0.5 and
matching motion type.

Error ↓ #Matched ↑

Input Model A A (t) A (r) O A A (t) A (r)/O

RGBD

RandMot 59.71 59.06 60.21 0.38 44713 19598 25115
MostFreq 11.08 3.57 16.33 0.32 44896 18468 26428

OpdRcnn-C 9.4±0.02 6.7±0.13 11.5±0.09 0.1±0 46019.3±59.73 20123.8±11.93 25895.5±68.12
OpdRcnn-O 6.9±0.07 4.1±0.08 9.0±0.1 0.1±0 46250.4±58.47 20133.4±82.60 26117±88.61

D (PC) ANCSH [4] 10.41 - 10.41 0.09 6935 - 6935
OpdPN 6.59 3.38 9.11 0.09 19672 8666 11006

D
OpdRcnn-C 9.6±0.08 6.3±0.09 12±0.11 0.1±0 45055±60.28 19249.6±52.59 25805.4±57.31
OpdRcnn-O 7.1±0.10 4.1±0.10 9.3±0.14 0.1±0 45537.2±57.13 19494±102.17 26043.2±73.82

RGB
OpdRcnn-C 9.7±0.05 6.7±0.07 12.1±0.09 0.1±0 46282±92.65 20424±81.72 25858±22.91
OpdRcnn-O 7.4±0.09 4.1±0.04 9.9±0.17 0.1±0 46545±128.38 20486±73.61 26059±81.78
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Table 5: Error metrics for matched instances for OPDSynth test set (motion
averaged) with matches determined by sweeping over different IoU thresholds.

Motion-averaged

Error ↓ #Matched ↑

Input Model A A (t) A (r) O A A (t) A (r)/O

RGBD

RandMot 59.63 59.06 60.2 0.38 22493 19853 12566
MostFreq 9.96 3.57 16.36 0.32 22505 18563 13223

OpdRcnn-C 9.1±0.03 6.7±0.13 11.5±0.09 0.1±0.00 23113.3±27.6 20307.3±15.38 12959.8±34.08
OpdRcnn-O 6.6±0.06 4.1±0.08 9.0±0.10 0.1±0.00 23239.2±31.33 20335.2±81.92 13071.8±44.58

D (PC) ANCSH [4] 10.36 - 10.36 0.09 6975 - 6975
OpdPN 6.25 3.38 9.12 0.09 9862 8705 5510

D
OpdRcnn-C 9.2±0.08 6.3±0.09 12.0±0.11 0.1±0.00 22625.4±23.91 19432.0±51.54 12909.2±28.68
OpdRcnn-O 6.7±0.10 4.1±0.10 9.3±0.14 0.1±0.00 22888.4±30.77 19713±105.68 13031.8±36.28

RGB
OpdRcnn-C 9.4±0.05 6.7±0.07 12.1±0.10 0.1±0.00 23256.8±44.0 20638.6±75.84 12937.6±11.57
OpdRcnn-O 7.0±0.08 4.1±0.04 9.9±0.17 0.1±0.00 23398.6±68.99 20718.2±81.51 13039.4±41.66

Table 6: Error metrics for the OPDReal test set (micro-averaged) with the
predicted part matched to the ground truth at IoU of 0.5 and matching motion
type.

Error ↓ #Matched ↑

Input Model A A (t) A (r) O A A (t) A (r)/O

RGBD

RandMot 59.82 59.62 60.12 0.38 10088 5990 4098
MostFreq 13.99 7.67 22.40 0.30 9738 5562 4176

OpdRcnn-C 15.21 16.07 13.84 0.10 9942 6119 3823
OpdRcnn-O 9.84 8.83 11.44 0.14 10076 6191 3885

D
OpdPN 7.33 7.67 6.99 0.08 4461 2265 2196
OpdRcnn-C 22.37 26.70 15.56 0.12 9485 5800 3685
OpdRcnn-O 13.76 13.67 13.89 0.17 9417 5738 3679

RGB
OpdRcnn-C 14.93 15.60 13.84 0.12 9916 6151 3765
OpdRcnn-O 10.32 9.32 11.91 0.16 10225 6270 3955

Table 7: Error metrics for matched instances for OPDReal test set (motion
averaged) with matches determined by sweeping over different IoU thresholds.

Motion-averaged

Error ↓ #Matched ↑

Input Model A A (t) A (r) O A A (t) A (r)/O

RGBD

RandMot 59.88 59.65 60.12 0.38 5074 6050 2049
MostFreq 15.03 7.65 22.40 0.30 4887 5597 2088

OpdRcnn-C 14.97 16.11 13.84 0.10 5003 6184 1911
OpdRcnn-O 10.14 8.84 11.44 0.14 5077 6268 1943

D
OpdPN 7.33 7.67 6.99 0.08 2233 2268 1099
OpdRcnn-C 21.14 26.72 15.56 0.12 4785 5881 1844
OpdRcnn-O 13.81 13.71 13.92 0.17 4758 5833 1842

RGB
OpdRcnn-C 14.72 15.61 13.84 0.12 4984 6202 1883
OpdRcnn-O 10.60 9.29 11.91 0.16 5146 6337 1978
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motion type. In the next section, we examine in more detail the ANCSH
performance on only the ‘one-door’ kinematic structure.

B.4 Comparison against ANCSH

Table 8: Comparison of OpdRcnn-O against ANCSH [4] and OpdPN baselines.
‘Complete set’ means evaluation on all objects in the test set. The ‘one-door
set’ includes only objects with one door exhibiting rotational motion. OpdPN is
trained on objects with no more than 5 parts in our train set. ANCSH is trained
on objects in the train set with one door exhibiting rotational motion. The ‘one
rotating door’ objects are the most frequent structure in our OPDSynth dataset.
OpdRcnn-O is trained with all objects in the train set for the ‘complete’ test,
and trained on only single rotating door objects.

Part-averaged Motion-averaged

mAP % ↑ mAP % ↑ Error ↓ #Matched ↑

Input Model PDet +M +MA +MAO MDet +MA +MAO A A (t) A (r) O A A (t) A (r)/O

Complete Set

RGBD RandMot 5.0 1.3 0.2 0.1 6.2 0.7 0.3 59.63 59.06 60.2 0.38 22493 19853 12566
RGBD MostFreq 69.4 66.1 49.2 27.8 73.6 61.6 38.8 9.96 3.57 16.36 0.32 22505 18563 13223
D (PC) OpdPN 20.4 19.3 14.0 13.6 22.0 18.1 17.6 6.25 3.38 9.12 0.09 9862 8705 5510
D (PC) ANCSH 2.7 2.7 2.3 2.1 3.9 3.1 2.8 10.36 - 10.36 0.09 6975 - 6975
RGB OpdRcnn-O 67.5 66.4 51.5 47.9 75.1 64.6 62.2 6.96 4.2 9.72 0.11 23401 20682 13060
D OpdRcnn-O 67.6 65.8 52.5 48.6 72.2 63.2 60.8 6.54 4.1 8.98 0.11 22945 19910 12990
RGBD OpdRcnn-O 69.4 67.9 53.5 49.7 75.3 66.3 63.7 6.47 3.91 9.02 0.10 23247 20288 13103

One-Door Set

RGBD RandMot 14.6 4.3 1.3 0.0 3.6 0.8 0.0 60.58 - 60.58 0.36 3224 - 3224
RGBD MostFreq 96.3 96.3 41.4 6.6 96.3 41.4 6.6 30.17 - 30.17 0.32 4775 - 4775
D (PC) OpdPN 71.1 71.1 45.6 40.0 71.1 45.6 40.0 11.55 - 11.55 0.11 4075 - 4075
D (PC) ANCSH 84.2 84.2 75.2 70.0 84.2 75.2 70.0 5.92 - 5.92 0.06 4465 - 4465
RGB OpdRcnn-O 90.0 90.0 65.9 54.8 90.0 65.9 54.8 11.31 - 11.31 0.14 4582 - 4582
D OpdRcnn-O 94.8 94.8 69.2 61.2 94.8 69.2 61.2 12.77 - 12.77 0.14 4715 - 4715
RGBD OpdRcnn-O 96.3 96.3 73.7 63.4 96.3 73.7 63.4 11.61 - 11.61 0.13 4775 - 4775

In the main paper we evaluated the ANCSH approach of Li et al. [4] on a
dataset including objects with varying number of parts and motion types. This
puts this approach at a disadvantage as it was designed such that each trained
model can only operate on a fixed kinematic chain. Thus, to evaluate ANCSH in
a setting that is closer to its assumption of a fixed kinematic chain, we construct
a ‘one-door dataset’ with includes 243 instances with one rotating door part
from our original 683 models. More specifically, we pick 172 models from train,
32 models from val and 39 models from test. We train ANCSH, OpdPN, and
OpdRcnn on the train set of the one-door dataset and evaluate on the test set
of the ‘one-door dataset’.

Table 8 shows the results on the one-door dataset. Unlike the results on
the complete set, ANCSH performs well on this subset of the data because
the strong assumption of a single kinematic structure is satisfied. In addition,
ANCSH is given prior knowledge about the rest (closed) state of the object
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Table 9: Analysis of performance of OpdRcnn-O given ground truth 2D bounding
box, part category and object pose on the validation set of OPDSynth. We
compare the performance of using the predicted part vs using the ground truth
2D bounding box and part category (GT Box2DPart), the ground truth object
pose (GT Pose), and the combination (GT Box2DPartPose). We see that
having access to the ground truth object pose (GT Pose) is important for
accurate motion prediction.

Part-averaged mAP % ↑ Motion-averaged mAP % ↑

PDet +M +MA +MAO MDet +MA +MAO

RGBD

OpdRcnn-O 72.5±0.34 70.6±0.29 51.7±0.62 47.1±0.59 75.4±0.07 61.6±0.32 59.0±0.32
GT Box2DPart 99.0±0.00 90.9±0.16 50.6±0.36 45.4±0.27 89.7±0.15 58.1±0.32 54.7±0.28
GT Pose 73.1±0.10 71.0±0.05 60.5±0.06 59.4±0.05 75.2±0.08 67.0±0.14 66.2±0.09
GT Box2DPartPose 99.0±0.00 90.6±0.37 65.5±0.24 63.8±0.17 89.5±0.19 73.3±0.26 72.0±0.30

D

OpdRcnn-O 69.3±0.35 67.5±0.33 50.7±0.55 45.1±0.50 72.5±0.26 59.1±0.36 55.9±0.49
GT Box2DPart 99.0±0.00 89.7±0.30 50.6±0.09 45.2±0.17 88.9±0.26 57.8±0.19 54.3±0.26
GT Pose 70.1±0.21 68.3±0.22 59.0±0.14 57.9±0.13 73.3±0.11 65.2±0.09 64.4±0.10
GT Box2DPartPose 99.0±0.00 89.3±0.23 64.8±0.19 63.1±0.09 88.4±0.33 72.7±0.29 71.5±0.29

RGB

OpdRcnn-O 74.2±0.34 72.4±0.32 52.4±0.31 47.3±0.40 79.1±0.24 62.6±0.40 59.6±0.45
GT Box2DPart 99.0±0.00 91.3±0.14 51.8±0.22 46.7±0.23 90.9±0.11 60.8±0.17 57.0±0.25
GT Pose 75.5±0.07 73.6±0.09 61.0±0.14 59.8±0.08 79.8±0.08 70.5±0.06 69.5±0.04
GT Box2DPartPose 99.0±0.00 91.4±0.19 64.2±0.16 62.4±0.17 90.3±0.16 73.7±0.23 72.3±0.18

during training, and requires additional annotation that our method does not
need. Notably, under this setting, ANCSH has a much more accurate rotation
origin prediction than our methods. While our methods have slightly less accurate
motion parameter estimation, they have more accurate part detection and our
structure-agnostic approach handles arbitrary variations in kinematic structure
with the same model.

B.5 Additional analysis

Experiments with ground truth. To investigate what parts of the problem
are challenging, we conduct experiments using ground truth bounding boxes and
part labels (GT Box2DPart), as well as ground truth object pose (GT Pose)
and their combination (GT Box2DPartPose). Table 9 summarizes the result
of using ground-truth for OpdRcnn-O on OPDSynth for RGBD, D, and RGB.

For the ground truth 2D bounding boxes, we use them as proposals to extract
image features for the box head and mask head in MaskRCNN (dropping all
detection and segmentation losses). To make sure there is no gap between our
training and inference, we also finetune our final model with features extracted
from the ground truth bounding boxes. As expected, when using the ground-
truth bounding boxes and ground truth part label (GT Box2DPart), the part
detection is close to perfect. As noted in the main paper, having the ground
truth object pose (GT Pose) is more important for motion parameter estimation
as seen in the increase in +MA between (GT Pose) and (GT Box2DPart),
with further improvement when both are provided (GT Box2DPartPose). The
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Fig. 2: Plots showing correlation between part detection performance and part
motion estimation performance. All results are based on the OpdRcnn-O model
evaluated on OPDSynth validation set. Left: part-averaged motion estimation
performance against detection performance (PDet). Middle: motion-averaged
motion estimation performance against detection performance (PDet). Right:
precision of motion parameter estimation against part detection IoU. These three
plots show that motion parameter estimation performance is correlated with part
detection performance, with small differences between input modalities.

+MA metric is about the same when using the predicted bounding box vs ground
truth.

Correlation of part detection and motion estimation performance. We
perform a more detailed analysis of the correlation between openable part de-
tection performance and motion estimation performance. We create plots of
aggregated motion estimation performance against different buckets of part detec-
tion performance as measured by part-averaged mAP (PDet) (see Figure 2 left
and middle). We also evaluate within the buckets divided by the IoU for each pair
of GT and prediction. Figure 2 clearly shows that for buckets with better part
detection, motion parameter estimation (+MAO) is also higher, which indicates
that better openable part detection at the image level contributes to better
motion parameter prediction. Although the second setting evaluates on different
buckets, it is still computed at the image level, which cannot show the direct
relationship between detection and motion prediction for each part. Therefore,
we design a third evaluation setting for motion prediction at the instance level.
In this setting, instead of using mAP we use precision of the motion parameter
estimation on matched parts (IoU > 0.5 and part category matches). Figure 2
(right) shows the results for the motion in different IoU buckets. We see a strong
correlation between the detection and the motion prediction.

Motion thresholds. From the plot in Figure 2 (right) we can see that com-
bining depth and RGB information provides a non-trivial benefit in terms of
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motion parameter precision when the part detection is good (RGBD results are
significantly better than RGB for higher detection IoU values). From Table 10,
we can see that when the motion threshold is stricter, the depth input and RGBD
input have better motion parameter estimation results even if their detection is
worse than RGB. We hypothesize that depth information contributes to more
precise motion prediction when the part detection performance is reasonable.

Table 10: Results for OpdRcnn-O with different threshold for motion axis (τaxis)
and motion origin (τorigin times the diagonal).

Part-averaged mAP % ↑ Motion-averaged mAP % ↑

Input τaxis τorigin PDet +M +MA +MAO MDet +MA +MAO +MA (t) +MA (r) +MO (r)

RGB

10 0.25 75.3 73.4 53.6 48.8 80.0 64.0 61.2 70.0 58.5 66.4
10 0.10 75.3 73.4 53.6 35.9 80.0 64.0 48.8 70.0 58.5 32.2
5 0.25 75.3 73.4 34.5 32.6 80.0 43.6 42.3 47.1 40.4 66.4
5 0.10 75.3 73.4 34.5 25.2 80.0 43.6 34.3 47.1 40.4 32.2
1 0.25 75.3 73.4 0.9 0.9 80.0 1.2 1.1 0.7 1.6 66.4
1 0.10 75.3 73.4 0.9 0.7 80.0 1.2 0.9 0.7 1.6 32.2

D

10 0.25 70.5 68.7 51.7 46.4 73.4 60.3 57.6 63.1 58.9 64.6
10 0.10 70.5 68.7 51.7 32.0 73.4 60.3 43.8 63.1 58.9 29.1
5 0.25 70.5 68.7 35.9 33.3 73.4 44.8 43.2 48.6 41.9 64.6
5 0.10 70.5 68.7 35.9 24.4 73.4 44.8 33.8 48.6 41.9 29.1
1 0.25 70.5 68.7 0.9 0.8 73.4 1.1 1.1 1.4 0.9 64.6
1 0.10 70.5 68.7 0.9 0.7 73.4 1.1 1.0 1.4 0.9 29.1

RGBD

10 0.25 73.3 71.0 53.6 48.5 75.4 62.8 60.0 64.7 61.7 67.9
10 0.10 73.3 71.0 53.6 35.4 75.4 62.8 47.8 64.7 61.7 35.8
5 0.25 73.3 71.0 37.1 34.6 75.4 46.2 44.7 48.1 44.9 67.9
5 0.10 73.3 71.0 37.1 26.8 75.4 46.2 36.5 48.1 44.9 35.8
1 0.25 73.3 71.0 1.5 1.5 75.4 2.0 2.0 1.8 2.2 67.9
1 0.10 73.3 71.0 1.5 1.2 75.4 2.0 1.7 1.8 2.2 35.8

B.6 Additional qualitative results

Figure 3 shows a qualitative comparison between ANCSH, OpdPN and OpdRcnn-
O. We see that our OpdRcnn-O approach detects openable parts much more
reliably, and overall provides more accurate motion parameter estimates for the
detected parts.

C Dataset details

We provide additional statistics on the part and structure variation (Appendix C.1)
found in OPDSynth and OPDReal, and details on how we rendered or selected
images for the two datasets(Appendices C.2 and C.3).
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OPDSynth

GT

OpdRcnn-O

ANCSH Miss Miss Miss Miss Miss Miss

OpdPN Miss Miss

OPDReal

GT

OpdRcnn-O

OpdPN Miss Miss Miss Miss

GT

OpdRcnn-O

OpdPN Miss Miss Miss Miss Miss Miss Miss

Fig. 3: Qualitative results comparing our approach against the ANCSH and
OpdPN baselines. Structure of the figure is the same as in the main paper. Both
ANCSH and OpdPN fail to detect many of the openable parts, in particular for
the more challenging OPDReal dataset. In contrast, our OpdRcnn-O approach
detects more parts and provides more accurate motion parameter estimates.
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Table 11: Openable part labels from PartNet-Mobility [9] for each object category
we use in our experiments.
Category Part labels

Storage cabinet_door, drawer, drawer_box, cabinet_door_surface, handle, glass, other_leaf, door
Table drawer, drawer_box, handle, cabinet_door, cabinet_door_surface, shelf, keyboard_tray_surface
Fridge door, door_frame, display_panel, control_panel, glass
Microwave door
Washer door
Dishwasher door, door_frame, display_panel
Bin cover, lid, frame_vertical_bar, opener, cover_lid, other_leaf, drawer
Oven door, door_frame
Safe door
Box rotation_lid, lid_surface, countertop, drawer
Suitcase lid

C.1 Dataset statistics

Part and motion statistics In Table 12 we report the total numbers of different
part types, as well as number of images of different part types and number of
motion types observed across all images.

Openable part structure variation statistics We note that it is possible for
objects belonging to the same object category to have variation in the structure
(number of doors, drawers, and lids). Figure 4 shows the statistics of the structure
variation of objects in our datasets.

C.2 OPDSynth details

Consistent part labeling Our OPDSynth dataset is based on synthetic objects
from the PartNet-Mobility dataset. As the initial part labels for these objects
may be inconsistent, we developed a two-pass approach to identify and label all
openable parts. In the first pass, we identify all part labels that may correspond
to openable parts. For each object category we identify the set of openable part
labels from the set of all part labels. For instance, for the object category of ‘box’,
we include ‘rotation lid’, ‘lid_surface’ as openable parts, but not ‘base_body’
or ‘handle’. After collecting all part labels for each model category, we select an
example model for each part label in that model category. Then through verifying
the corresponding example model, we determine if we want to include this part
label or not. From the accepted part labels (Table 11), we see that the semantic
meaning of these part labels are all relevant to drawers, doors or lids. After the
first pass, we get 740 models and 1441 parts over 11 categories. The second pass
is to verify all the parts selected from the first pass manually. We designed a user
interface to show the part mobility and help annotators judge if it is a valid part
which can be opened and closed. We also relabel the parts with consistent labels
from three main categories (drawer, door and lid). The annotation process took
approximately 30 minutes to obtain 1343 valid parts and reassign them to the
consistent set of openable part labels.
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Fig. 4: Part composition distribution for our OPDSynth (left) and OPDReal
(right) datasets. Each row represents a particular part composition with the
icon at the left indicating the number of doors (orange), drawers (blue), and
lids (green). The plot bar colors indicate the distribution over object categories.
The top 15 part compositions are plotted sorted by number of objects with that
part composition in the OPDSynth dataset. We see that our datasets exhibit
a diverse set of part compositions with varying numbers of parts of each type.
These compositions are also distributed across several object categories.
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Table 12: Statistics of the distribution over part types and motion types in
our datasets. The first three columns report the number of part instances (i.e.
counting distinct openable parts across all objects). The second set of three
columns reports the number of images with parts of that type across all objects.
The last two columns report the number of images with a part exhibiting the
specific motion type, across all parts and objects.

# parts # part images # motion images
drawer door lid drawer door lid translation rotation

OPDSynth
train 363 508 89 16882 141180 16880 171705 155175
val 79 94 20 28265 22635 4605 29200 26305
test 75 97 18 28425 25640 4825 28665 30225

OPDReal
train 304 268 3 27598 17695 212 27540 17965
val 78 79 2 7324 5311 152 7520 5267
test 74 65 2 7002 4685 110 7002 4795

View selection We render RGBD images of the object using a perspective
camera, with a 50◦ vertical field-of-view at 256× 256 resolution. For the RGB
color we use Phong shading and a hemisphere light. We vary the position and
distance of the camera so that we get mostly views above and in front of the
object. To select specific views we sample the elevation θ, azimuth ϕ and distance
d independently. For each, we use a Bates distribution Bk(a, b) = a+ b−a

k

∑k
i=1 ui,

that is the sum of k standard uniform random variables ui scaled to the range
(a, b), with a, b set as described below. We first sample a categorical variable v to
determine if we want a camera viewpoint: 1) in a mostly above and frontal view
with probability 0.6; 2) in a wider vertical distribution for the camera allowing for
the elevation θ to range from slightly below the object to above with probability
0.2; or 3) in a wider horizontal distribution for the camera allowing for a larger
range for the azimuth ϕ and distance d. Note that the camera directly in front of
the object is at ϕ = 0. The three cases are summarized below:

1. Above, frontal view:
P (v = 1) = 0.6, θ ∼ B2(30, 70), ϕ ∼ B2(−60, 60), d ∼ B2(1.8, 2.8)

2. Slightly below above:
P (v = 2) = 0.2, θ ∼ B3(−35, 35), ϕ ∼ B2(−60, 60), d ∼ B2(1.8, 2.8)

3. Slightly below above, wider azimuth/distance distribution:
P (v = 3) = 0.2 θ ∼ B3(−35, 35), ϕ ∼ B3(−90, 90), d ∼ B2(1.6, 3.1)

Image rendering We render single-view RGB and depth images from OPDSynth.
For each object, we render a total of 5+20 ·num_parts views each with different
motion states for each part. In one motion state all parts are at the min value of
their motion range. Then, we pick four random states for each moving part except
the min value (one of which must be the max value of the range), while other
parts stay at the min value of their motion range. We augment the images using
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RGBD backgrounds from the Matterport3D [1] dataset by randomly selecting
from the ‘straight ahead’ and ‘downward tilt’ camera views. Each image has four
random backgrounds resulting in a total of 25 + 100 · num_parts images.

C.3 OPDReal details

Data capture and reconstruction We used iPad Pro 2021 devices to capture
RGB-D video scans of articulated objects in indoor environments. We focused
on object categories that overlap with OPDSynth and have openable parts. Each
scan focused on a single object instead of capturing the entire environment.
We take multiple scans (∼ 3) of each object. In total, three student volunteers
collected 863 scans covering 294 different objects across 8 object categories.
From these, we obtained 763 polygonal meshes for 284 different objects (some
scans failed to produce high quality reconstructions). We obtained polygonal
mesh reconstructions from these scans using the Open3D [11] implementation of
RGB-D integration and Waechter et al. [7]’s implementation of texturing.

Annotation We adapted the 3D annotation tool from ScanNet [2] to work with
textured meshes and used it to annotate object parts (‘door’, ‘drawer’, ‘lid’, or
‘base’). For the object articulation, we use the annotation interface from Xu
et al. [10]. Each articulatable part is annotated with the motion type (‘rotation’
or ‘translation’), motion axis and rotation origin, as well as motion ranges. We
developed another interface to indicate the semantic orientation (front) of the
oriented bounding box for the object. The annotation was done by student
volunteers. The semantic part annotation took the longest with an average of 7.18
minutes per object, and 5483 minutes in total (across 5 volunteers). Articulated
part annotation took an average of 3.24 minutes per object and 2473 minutes
in total. The annotation of semantic OBBs was much faster with an average of
∼ 20 seconds taken per scan. Articulation and semantic OBB annotation was
done by one of the authors.

Frame selection For OPDReal, we selected frames from each scan to form
our image dataset. We rescale both the depth and color frames to a 256 x 256
resolution using a center-crop strategy. When selecting frames, we sample one
frame every second ensuring that at least 1% of pixels belong to an openable
part and at least 20% of parts are visible.
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