Dividing and Aggregating Network for Multi-view Action Recognition
Dongang Wang, Wanli Ouyang, Wen Li, Dong Xu; The European Conference on Computer Vision (ECCV), 2018, pp. 451-467
Abstract
In this paper, we propose a new Dividing and Aggregating Network (DA-Net) for multi-view action recognition. In our DA-Net, we learn view-independent representations shared by all views at lower layers, while we learn one view-specific representation for each view at higher layers. We then train view-specific action classifiers based on the view-specific representation for each view and a view classifier based on the shared representation at lower layers. The view classifier is used to predict how likely each video belongs to each view. Finally, the predicted view probabilities from multiple views are used as the weights when fusing the prediction scores of view-specific action classifiers. We also propose a new approach based on the conditional random field (CRF) formulation to pass message among view-specific representations from different branches to help each other. Comprehensive experiments on two benchmark datasets clearly demonstrate the effectiveness of our proposed DA-Net for multi-view action recognition.
Related Material
[pdf] [
bibtex]
@InProceedings{Wang_2018_ECCV,
author = {Wang, Dongang and Ouyang, Wanli and Li, Wen and Xu, Dong},
title = {Dividing and Aggregating Network for Multi-view Action Recognition},
booktitle = {The European Conference on Computer Vision (ECCV)},
month = {September},
year = {2018}
}