Spatial Hierarchy Aware Residual Pyramid Network for Time-of-Flight Depth Denoising

Guanting Dong, Yueyi Zhang, Zhiwei Xiong ;

Abstract


Time-of-Flight (ToF) sensors have been increasingly used on mobile devices for depth sensing. However, the existence of noise, such as Multi-Path Interference (MPI) and shot noise, degrades the ToF imaging quality. Previous CNN-based methods remove ToF depth noise without considering the spatial hierarchical structure of the scene, which leads to failures in obtaining high quality depth images from a complex scene. In this paper, we propose a Spatial Hierarchy Aware Residual Pyramid Network, called SHARP-Net, to remove the depth noise by fully exploiting the geometry information of the scene on different scales. SHARP-Net first introduces a Residual Regression Module, which utilizes the depth images and amplitude images as the input, to calculate the depth residual progressively. Then, a Residual Fusion Module, summing over depth residuals from all scales, is imported to fuse multi-scale geometry information. Finally, shot noise is further eliminated by a Kernel Prediction Network. Experimental results demonstrate that our method significantly outperforms state-of-the-art ToF depth denoising methods on both synthetic and realistic datasets. The source code is available at https://github.com/ashesknight/tof-mpi-remove ."

Related Material


[pdf]