
MatryODShka: Real-time 6DoF Video
View Synthesis using Multi-Sphere Images

— Supplemental Document —

Benjamin Attal1,2[0000−0002−0132−5232], Selena Ling1[0000−0001−6458−4488],
Aaron Gokaslan1[0000−0002−3575−2961], Christian Richardt3[0000−0001−6716−9845],

and James Tompkin1[0000−0003−2218−2899]

1Brown University, USA 2Carnegie Mellon University, USA 3University of Bath, UK

These appendices contain additional results and comparisons (Section 1) as well
as implementation details of our approach, including our used hardware and
software (Section 2.1), our joint bilateral upsampling (Section 2.2), details of
our architecture and hyperparameters (Section 2.3), and rendering pseudocode
(Section 2.4).

1 Additional Results and Comparisons

We show additional results and comparisons in Figures 1 to 6, and in video form
in our supplemental materials. This includes two additional MSI decompositions
in Figures 1, 3 and 5, and view synthesis comparisons to the perspective double-
plane-sweep baseline in Figures 2, 4 and 6. Our approach produces better novel
views at larger synthesis baselines than the baseline method. We illustrate the
limitations of a layered representation such as ours in Figure 7. Please see our
supplemental video for additional results.



2 B. Attal, S. Ling, A. Gokaslan, C. Richardt, and J. Tompkin

Left ODS input Right ODS input Pseudo-disparity

Alpha mapsBlending weights Multi-sphere image

Fig. 1. Inferred MSI representation for the Cafeteria video [2]. Blending weights are
red for left ODS and blue for right ODS. Alpha maps are black for transparent and
white for opaque. Each row shows a single layer (out of 32) at the near, mid, and far
extents of the scene; content exists across all layers to produce the final result.

OursDouble-plane-sweep perspective baseline

1
IP

D
3
IP

D
5
IP

D

OursDouble-plane-sweep perspective baseline

1
IP

D
3
IP

D
5
IP

D

OursDouble-plane-sweep perspective baseline

1
IP

D
3
IP

D
5
IP

D
OursDouble-plane-sweep perspective baseline

1
IP

D
3
IP

D
5
IP

D

OursDouble-plane-sweep perspective baseline

1
IP

D
3
IP

D
5
IP

D

OursDouble-plane-sweep perspective baseline

1
IP

D
3
IP

D
5
IP

D

OursDouble-plane-sweep perspective baseline

1
IP

D
3
IP

D
5
IP

D

Fig. 2. Cafeteria video [2] results and comparison to the double-plane-sweep baseline
on the left. Inference for low-resolution (640×320) MSI representation for comparison
on spherical images (not our high-resolution real-time perspective VR view).



MatryODShka: Real-time 6DoF Video using MSIs — Supplement 3

Left ODS input Right ODS input Pseudo-disparity

Alpha mapsBlending weights Multi-sphere image

Fig. 3. Inferred MSI representation for the MammaMia video captured with a moving
camera. Blending weights are red for left ODS and blue for right ODS. Alpha maps
are black for transparent and white for opaque. Each row shows a single layer (out of
32) at the near, mid, and far extents of the scene; content exists across all layers to
produce the final result.

OursDouble-plane-sweep perspective baseline

1
IP

D
3
IP

D
5
IP

D

OursDouble-plane-sweep perspective baseline

1
IP

D
3
IP

D
5
IP

D
OursDouble-plane-sweep perspective baseline

1
IP

D
3
IP

D
5
IP

D

OursDouble-plane-sweep perspective baseline

1
IP

D
3
IP

D
5
IP

D

OursDouble-plane-sweep perspective baseline

1
IP

D
3
IP

D
5
IP

D

OursDouble-plane-sweep perspective baseline

1
IP

D
3
IP

D
5
IP

D

OursDouble-plane-sweep perspective baseline

1
IP

D
3
IP

D
5
IP

D

Fig. 4. MammaMia video results and comparison to the double-plane-sweep baseline
on the left. Inference for low-resolution (640×320) MSI representation for comparison
on spherical images (not our high-resolution real-time perspective VR view).



4 B. Attal, S. Ling, A. Gokaslan, C. Richardt, and J. Tompkin

Left ODS input Right ODS input Pseudo-disparity

Alpha mapsBlending weights Multi-sphere image

Fig. 5. Inferred MSI representation for the GrandCanyon video. Blending weights are
red for left ODS and blue for right ODS. Alpha maps are black for transparent and
white for opaque. Each row shows a single layer (out of 32) at the near, mid, and far
extents of the scene; content exists across all layers to produce the final result.

OursDouble-plane-sweep perspective baseline

1
IP

D
3
IP

D
5
IP

D

OursDouble-plane-sweep perspective baseline

1
IP

D
3
IP

D
5
IP

D

OursDouble-plane-sweep perspective baseline

1
IP

D
3
IP

D
5
IP

D

OursDouble-plane-sweep perspective baseline

1
IP

D
3
IP

D
5
IP

D

OursDouble-plane-sweep perspective baseline

1
IP

D
3
IP

D
5
IP

D

OursDouble-plane-sweep perspective baseline

1
IP

D
3
IP

D
5
IP

D

OursDouble-plane-sweep perspective baseline

1
IP

D
3
IP

D
5
IP

D

Fig. 6. GrandCanyon video results and comparison to the double-plane-sweep baseline
on the left. Inference for low-resolution (640×320) MSI representation for comparison
on spherical images (not our high-resolution real-time perspective VR view).



MatryODShka: Real-time 6DoF Video using MSIs — Supplement 5

Fig. 7. Limitation: Using our system within a VR headset allows large motions away
from the center of the MSI, exposing the layer structure of the representation (bottom).



6 B. Attal, S. Ling, A. Gokaslan, C. Richardt, and J. Tompkin

2 Implementation Details

2.1 Hardware and Software

Simultaneously decoding high-resolution video (e.g., 4K×4K at 30Hz), inferring
MSIs, and rendering stereo video from MSIs into a VR headset requires significant
compute. For the headset, we use an Oculus Rift S, which requires rendering at
80Hz. We compare two current PC platforms: a current discrete-GPU laptop
and a workstation. The laptop has an Intel(R) Core(TM) i7-8750H CPU with
16GB RAM, and NVIDIA GeForce RTX 2080 with Max-Q Design. This provides
30Hz MSI inference and 60+Hz novel-view rendering (30+Hz in VR). This
rendering speed is sufficient for general desktop viewing, but not sufficient for
fast head motion in VR. The workstation has an AMD Ryzen 2950X CPU with
64GB RAM, and two NVIDIA GeForce 2080 Ti GPUs with RTX bridge to allow
fast inter-GPU memory copy. This provides 30Hz MSI inference and 250+Hz
novel-view rendering (125+Hz in VR).

We train our model using TensorFlow via our TensorFlow-based reprojection
renderer. For our inference engine within our Unity-based renderer, we use
TensorRT for efficient GPU computation. We convert our model weights to
16-bit floating-point precision and load the model in TensorRT using ONNX.
Further, we use CUDA for anti-aliased video downsampling to the network’s
expected input resolution, and for ODS sphere sweep volume creation. Finally,
we implement ODS reprojection rendering from our MSIs, and our joint-bilateral
upsampling, using Unity’s CG shaders.

2.2 Joint-Bilateral Upsampling Effect

Our network architecture uses learned upsampling within its U-Net via transpose
convolution layers, which is known to introduce checkerboarding artifacts but is
approximately 2× faster to infer than bilinear upsampling followed by learned
convolution [3]. To correct for these artifacts, we use joint-bilateral upsampling
[1] on the screen-space perspective view as we accumulate the alpha layers and
blend the RGB inputs within our real-time renderer. This successfully removes
some artifacts.

Bilateral filters are computationally expensive, yet this approach is possible
because of our combined hardware and software design: 1) We use a dedicated
GPU for inference, which we wish to run as fast as possible for real-time video,
and so we make a trade off in the quality of the model inference because 2) We
use a dedicated GPU for rendering; rendering the multi-sphere representation is
fast, and so we have spare compute capacity on the render card for this filtering.
In a setting with a less powerful machine, the filtering could be skipped.

2.3 Network Architecture and Hyperparameters

We include a complete layer description of our network architecture in Table 1.
We also include a table of all of our architecture and system hyperparameters
(Table 2).



MatryODShka: Real-time 6DoF Video using MSIs — Supplement 7

Table 1. U-Net-style convolutional neural network architecture for our approach, as
shown in Figure 2 of the main paper. ‘k’ is the kernel size, ‘s’ is the stride, ‘d’ is
the dilation factor of the kernel, and ‘chns’ is the number of input/output channels
(kernels). The network input are the left and right sphere sweep volumes SL and SR.
The internal convolutional layers are identical to that of the architecture in [4], except
that input to each convolutional layer is also concatenated with the V coordinate
(‘+1’ channel), as described in the main paper. As in [4], each convolutional layer is
followed by layer normalization and ReLU non-linearity, except for the last layer. The
double-plane sweep baseline uses the same architecture, without additional coordinate
channels.

Layer k s d chns in out input

conv1_1 3 1 1 2×32×3+1/64 1 1 SL + SR + V
conv1_2 3 2 1 64+1/128 1 2 conv1_1 + V
conv2_1 3 1 1 128+1/128 2 2 conv1_2 + V
conv2_2 3 2 1 128+1/256 2 4 conv2_1 + V
conv3_1 3 1 1 256+1/256 4 4 conv2_2 + V
conv3_2 3 1 1 256+1/256 4 4 conv3_1 + V
conv3_3 3 2 1 256+1/512 4 8 conv3_2 + V
conv4_1 3 1 2 512+1/512 8 8 conv3_3 + V
conv4_2 3 1 2 512+1/512 8 8 conv4_1 + V
conv4_3 3 1 2 512+1/512 8 8 conv4_2 + V

conv5_1 4 .5 1 1024+1/256 8 4 conv4_3 + conv3_3 + V
conv5_2 3 1 1 256+1/256 4 4 conv5_1 + V
conv5_3 3 1 1 256+1/256 4 4 conv5_2 + V
conv6_1 4 .5 1 512+1/128 4 2 conv5_3 + conv2_2 + V
conv6_2 3 1 1 128+1/128 2 2 conv6_1 + V
conv7_1 4 .5 1 256+1/64 2 1 conv6_2 + conv1_2 + V
conv7_2 3 1 1 64+1/64 1 1 conv7_1 + V
conv7_3 1 1 1 64+1/67 1 1 conv7_2 + V

Table 2. Hyperparameters for our dataset generation and training.

Parameter Value

Training / Test target views 63,000 / 27,000
Learning rate 0.0002
Batch size 1
Epochs 4
Optimizer Adam with β = 0.9

ODS baseline 0.064 metres
MSI radii [1, 100] metres
Target view offset (x, y, z) [0.02, 0.36] metres
Temporal rotation (θ, φ, ψ) ±1.7°
Temporal translation (x, y, z) ±0.01 metres
λL2, λERP-L2, or λPer 1
λTI 10



8 B. Attal, S. Ling, A. Gokaslan, C. Richardt, and J. Tompkin

2.4 Rendering Pseudocode

In Algorithm 1, we include pseudocode for the Render function from Section 3.3
in the main paper, which is used to train our network architecture. Then, in
Algorithm 2, we provide pseudocode for our real-time MSI renderer implemented
in Unity, which additionally uses high-resolution video input and a joint-bilateral
filter to improve quality.

Algorithm 1: Render function from Section 3.3 (main paper)
Render

Input:
M: A w × h×N MSI.
P : A 4× 4 matrix representing a target pose.

Output:
Î: Rendered ERP image from the target pose.

foreach pixel location (u, v) ∈ I do
r← GetRay(u, v, P )
{pi}Ni=1 ← GetIntersections(r,M)
{ci}Ni=1, {αi}Ni=1 ← Sample(M, {pi}Ni=1)
Î(u, v)← OverComposite({ci}Ni=1, {αi}Ni=1)

end
return Î

end

References

[1] Kopf, J.: 360° video stabilization. ACM Trans. Graph. 35(6), 195:1–9 (2016).
https://doi.org/10.1145/2980179.2982405 6

[2] Serrano, A., Kim, I., Chen, Z., DiVerdi, S., Gutierrez, D., Hertzmann, A., Ma-
sia, B.: Motion parallax for 360° RGBD video. TVCG 25(5), 1817–1827 (2019).
https://doi.org/10.1109/TVCG.2019.2898757 2

[3] Sugawara, Y., Shiota, S., Kiya, H.: Super-resolution using convolutional neu-
ral networks without any checkerboard artifacts. In: ICIP. pp. 66–70 (2018).
https://doi.org/10.1109/ICIP.2018.8451141 6

[4] Zhou, T., Tucker, R., Flynn, J., Fyffe, G., Snavely, N.: Stereo magnification: Learning
view synthesis using multiplane images. ACM Trans. Graph. 37(4), 65:1–12 (2018).
https://doi.org/10.1145/3197517.3201323 7

https://doi.org/10.1145/2980179.2982405
https://doi.org/10.1109/TVCG.2019.2898757
https://doi.org/10.1109/ICIP.2018.8451141
https://doi.org/10.1145/3197517.3201323


MatryODShka: Real-time 6DoF Video using MSIs — Supplement 9

Algorithm 2: Real-time rendering pipeline in Unity
RTRender

Input:
IL: A high-resolution w × h left ODS image.
IR: A high-resolution w × h right ODS image.
P : Pose of the VR headset

Output:
I: Rendered perspective image from headset pose

I ′L, I
′
R ← AntialiasedDownsample(IL, IR)

M← InferMSI(I ′L, I ′R)
M′ ← JointBilateralUpsample(M, IL, IR)
S ← ∅
foreach layer l ∈M′ do
Sl ← TextureSphere(M′, IL, IR, l)

end
I ← RasterizeWithAlpha(S, P )
return I

end


