Learning to plan with uncertain topological maps

Edward Beeching!, Jilles Dibangoye!, Olivier Simonin', and Christian Wolf?

L INRIA Chroma team, CITI Lab. INSA Lyon, France.
https://team.inria.fr/chroma/en/|

2 Université de Lyon, INSA-Lyon, LIRIS, CNRS, France.
{firstname.lastname}@insa-lyon.fr

Project page https://edbeeching.github.io/papers/learning to planl|

1 Supplementary material

1.1 Example graphs

Figure [I] shows example graphs extracted from three different environments
extracted with the method described in section 3.3 of the main paper.

Fig. 1: Examples of top down maps and graphs from three environments. For
each environment - Top-left: topological map with ground truth connectivities,
top-right: topological map with connection probabilities estimated by the learned
fiink function with line opacity corresponding to the link probability, bottom-
left: ground truth shortest path between a source an target node, bottom-right:
shortest path estimated by the Graph Neural Planner. Note the very bottom-right
prediction connects two nodes that are not connected in the ground truth, this

example would not be counted as a valid path during evaluation of the SPL
metric.

https://team.inria.fr/chroma/en/

2 E. Beeching et al.

A

Time-step 0 Time-step 8 Time-step 16

BEa

Time-step 24 Time-step 32 Time-step 48

Fig. 2: Six time-steps from a rollout of the hierarchical planner (graph+local) in an
unseen testing environment. For each time-step: left — RGB-D observation, right
— map of the environment (unseen) with graph nodes, source node, target node,
agent position(black), nearest neighbour to the agent, local point-goal provided
by the high level planner and planned path.

Time-step 42 Time-step 81

Time-step 113 Time-step 170 Time-step 209

Fig. 3: Failure case - Six time-steps from a rollout of the hierarchical planner
(graph+local) in an unseen testing environment. For each time-step: left — RGB-
D observation, right — map of the environment (unseen) with graph nodes,
source node, target node, agent position(black), nearest neighbour to the agent,
local point-goal provided by the high level planner and planned path.

Learning to plan with uncertain topological maps, supplementary material

Paths of length 2

Paths of length 3

Paths of length 4

Paths of length 5

800098300 00000000009 |35 5343000 I-U:I =23 # :
vos8 08 08 08
@
806 W 0.6 M’W 0.6 0.6
o
o
=)
1%

o o o o m

0-2 5 10 15 20 0-2 5 10 15 20 0-2 5 10 15 20 0-2 5 10 15 20

1.0 1.0 1.0 1.0

05| 0-0300F0-0| 00{08-000=0F-03 % ggaangtt 8¢ 3 08
06 W 0.6 | g-g-0-0-0-0-0-0-0-0| (06 = “
o
] W ° o000 90000

0.4 0.4 0.4 0.4

x Dijkstra: threshold 'W
Dikstra: custom cost
0.2 @ Neural Panner: deterministc 0.2 02 0.2
x Neural Planner: sam, pling
Optimal (6T)
0.0 5 10 15 20 0.0 5 10 15 20 0.0 5 10 15 20 0.0 5 10 15 20

inner steps # inner steps # inner steps # inner steps

n

Fig. 4: Performance of the hierarchical agent with varied low level inner loop
steps for a range of high-level path lengths.

1.2 Examples of Graph planner trajectories

Figures [2 and [3] of this document show additional rollouts of the hierarchical
planner, complementary to figure 6 of the main paper.

1.3 Effect of the length m of the local policy

In figure (] of this document we show the effect of the parameter m of the local
policy, described in section 3, page 6, of the main document, when evaluated
on a limited random subset of the validation data (1,200 problem instances).
The m parameter limits the maximum number of steps the local policy can take
before giving control back to the high-level graph planner. We recall that the
local policy can also decide to terminate the inner loop earlier through an explicit
STOP action. We see that performance of the planner and policy is comparable
up to 20 time-steps, which means the computationally costly planning step can
performed less frequently than the low level control of the local policy, without a
reduction in performance.

1.4 Hyper-parameters

Table [I] provides the hyper-parameters for the three different neural models used
in this work:

— the explorative policy used to create the graphs, trained through RL;
— the graph based high-level planner, trained in a supervised way, and
— the local policy, trained through RL.

4 E. Beeching et al.

Table 1: Hyper-parameters for the exploratory policy, node linkage function and
Neural Planner

Exploratory policy and Fjink

Simulator resolution 64x64
optimizer Adam: betas=(0.9, 0.999), eps=1e-5
learning rate 2.50e-04
weight decay 0.0
parallel agents 16
GRU hidden size 512
Entropy coef 0.001
Advantage normalization True
Generalized Advantage Estimation True
Minibatch size 4 (trajectories)
PPO CLIP 0.1
num environment steps 200 M
TBPTT 128

Neural Planner
optimizer Adam: betas=(0.9, 0.999), eps=1e-8
learning rate 0.001
weight decay 0.0001
batch size 32
num epochs 500
dataset size 36,000
GRU size 256
Feature size 512
Learning rate decay: 0.1 every 120 epochs
GNN steps 6
Multilayer GRU Depth 2
Gradient norm clipping 2.0

Local policy

Simulator resolution 64 %64
optimizer Adam: betas=(0.9, 0.999), eps=1e-8
learning rate 2.50e-04
weight decay 0.0
parallel agents 16
GRU hidden size 512
Entropy coef 0.001
Advantage normalization True
Generalized Advantage Estimation True
Minibatch size 4 (trajectories)
PPO CLIP 0.1
num environment steps 200 M

TBPTT 128

	Learning to plan with uncertain topological maps

