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1 Single-frame Annotation

We invite annotators with different backgrounds to label single-frames for all
actions intances. Before annotating each dataset, four annotators have watched a
few video examples containing different actions to be familiar with action classes.
They are asked to annotate one single frame for each target action instance
while watching the video by our designed annotation tool. Specifically, they are
required to pause the video when they identify an action instance and choose the
action class that the paused frame belongs to. Once they have chosen the action
class, they need to continue watching the video and record the frames for the next
target action instances. After watching the whole video, the annotator should
press the generation button and the annotation tool will then automatically
produce the timestamps and action classes of all operated frames for the given
video. Compared to the annotation process in the weakly-supervised setting, this
results into almost no extra time cost since the timestamps are automatically
generated. The single-frame annotation process is much faster than annotating
the temporal boundary of each action in which the annotator often watches the
video many times to define the start and end timestamp of a given action.

1.1 Annotation guideline

Different people may have different understandings of what constitutes a given
action. To reduce the ambiguity, we prepare a detailed annotation guideline,
which includes both clear action definitions as well as positive/negative exam-
ples with detailed clarifications for each action. For each action, we give (1)
textual action definition for single-frame annotation, (2) positive single-frame
annotations, and (3) segmented action instances for annotator to be familiar
with.

1.2 Annotation tool

Our annotation tool supports automatically recording timestamp for annotating
single-frame. This makes the annotation process faster when annotators notice an
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Fig. 1. Interface for annotating a single frame. First step is to pause the video when
annotators notice an action while watching the video. The second step is to select the
target class for the paused frame. After annotating an action instance, the annotator
can click the video to keep watching the video for the next action instance. Note that
the time is automatically generated by the annotation tool. After watching a whole
video, the annotator can press the generate button to save all records into a csv file.

action and ready to label the paused frame. The interface of our annotation tool
is presented in Figure 1. After watching a whole video, the annotator can press
the generate button, the annotation results will be automatically saved into a csv
file. When annotators think they made a wrong annotation, they can delete it at
any time while watching the video. We have shown the one annotation example
in the supplementary file. We have uploaded a video in the supplementary file
to show how to annotate single-frame while watching the video.

1.3 Quality control

We make two efforts to improve the annotation quality. First of all, each video
is labeled by four annotators, and the annotated single-frames of a view are
randomly selected during experiments to reduce annotation bias. Secondly, we
train annotators before annotating videos and make sure that they can notice
target actions while watching the video.

2 Action Frame Mining

The action frame mining strategy is described in Algorithm 1. We treat the
labeled action frame as the anchor frame and expand frames around it. We use
a threshold ξ and the label consistency with neighbors to decide whether to add
the unlabeled frame or not. The expanded frames are annotated with the same
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Algorithm 1 Action Frame Mining

1: Input: video classification activation C ∈ RT×Nc+1, labeled action frame at time
t belonging to action class y, expand radius r = 5, threshold ξ = 0.9.

2: Output: expanded frames set S
3: gather classification score C(t) for the anchor frame
4: S ← {(t, y)}
5: function Expand(s) ;
6: for j ← 1; j ≤ r do
7: ŷpast ← argmin C(t+ (j − 1)s)
8: ŷcurrent ← argmin C(t+ js)
9: ŷfuture ← argmin C(t+ (j + 1)s)

10: if ŷpast == ŷcurrent == ŷfuture and C(t+ js)y ≥ ξC(t)y then
11: S ← (t+ js, y)
12: end if
13: j ← j + s
14: end for
15: end function
16: EXPAND(-1)
17: EXPAND(1)
18: Return S

label as the anchor frame. As shown in Algorithm 1, we expand the frames at
t− 1 to the anchor frame. We first gather the classification score of three frames
around t − 1 frame. We then calculate the prediction classes for these three
frames. If they all have the same predicted class and the classification score for
the current frame at class y is above a threshold, we choose to put the current
frame into the training frame set S. For all experiments in the current paper,
we set ξ = 0.9 for fair comparison.

3 Evaluate Classification & Localization Independently

We evaluate our single-frame supervised model and weakly-supervised model in
terms of classification and localization independently. We adopt mean average
precision (mAP) in [8] to evaluate the video-level classification performance and
AP at different IoU thresholds to evaluate the class-agnostic localization quality
regardless of the action class. We report the video-level classification mAP in
Table 1, showing only marginal gain as expected. This is because THUMOS14
only contains one or two action classes in a single video which makes the video
be easily classified into the target action category. We also evaluates boundary
detection AP regardless of the label in Table 1, showing large gain after adding
single-frame supervision.
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Table 1. Classification accuracy and class-agnostic localization AP on THUMOS14.

Classification Class-agnostic localization
mAP AP@IoU=0.3 AP@IoU=0.5 AP@IoU=0.7

Ours w/o single-frame 97.8 42.1 18.1 5.5
Ours w/ single-frame 98.5 58.8 32.4 9.4

Table 2. The background η analysis on THUMOS14. AVG is the average mAP at IoU
0.1 to 0.7.

η mAP@hit
mAP@IoU

0.1 0.3 0.5 0.6 0.7 AVG

0.0 44.4±0.56 58.6±0.55 41.1±0.80 20.2±0.69 12.9±0.58 7.3±0.10 31.7±0.47

1.0 57.7±0.41 68.3±0.37 51.1±0.57 28.2±0.52 17.7±0.09 9.4±0.31 39.3±0.13

3.0 60.6±1.36 71.0±1.21 53.8±0.71 29.3±1.14 18.9±0.88 9.4±0.43 41.1±0.80

5.0 60.6±0.85 70.6±0.92 53.7±1.21 29.1±0.39 19.1±1.31 10.2±0.84 41.1±0.78

7.0 60.9±0.56 70.7±0.08 54.3±1.18 29.5±0.13 19.0±0.50 10.1±0.27 41.3±0.44

9.0 60.2±1.12 70.3±0.83 53.4±0.8 29.6±0.58 18.8±0.99 10.1±0.37 41.0±0.60

Table 3. The loss coefficients analysis on THUMOS14. AVG is the average mAP at
IoU 0.1 to 0.7.

parameter mAP@hit
Segment mAP@IoU

0.1 0.3 0.5 0.6 0.7 AVG

α = 0.2 61.9±0.34 71.6±0.73 54.2±1.31 29.3±0.47 18.4±0.62 9.7±0.35 41.3±0.56

α = 0.5 61.9±0.68 71.8±0.36 54.4±0.68 30.2±0.41 19.3±0.92 10.2±1.14 41.9±0.47

α = 0.8 60.7±0.95 71.0±0.40 53.8±0.64 29.4±0.26 19.0±0.23 10.0±0.25 41.2±0.22

β = 0.2 60.6±1.55 70.5±1.21 53.2±1.09 29.4±0.64 18.8±0.71 9.7±0.33 41.0±0.67

β = 0.5 60.2±0.69 70.5±0.55 53.7±0.71 29.4±0.16 18.8±0.47 10.0±0.34 41.1±0.42

β = 0.8 60.8±1.05 70.6±0.50 53.8±1.47 29.6±0.34 18.9±0.36 10.0±0.37 41.2±0.55

4 Sensitivity Analysis

4.1 Background Ratio

Table 2 shows the results with respect to different background ratios η on THU-
MOS14. The mean and standard deviation of segment and frame metrics are
reported. We ran each experiment three times. The single-frame annotation for
each video is randomly sampled from annotations by four annotators. From
the table 2, we find that our proposed SF-Net boosts the segment and frame
evaluation metrics on THUMOS14 dataset with background mining. The model
becomes stable when the η is set in range from 3 to 9.
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Supervision Method
mAP @IoU

0.5 0.7 0.9 AVG

Full CDC [5] 45.3 - - 23.8

Full SSN [9] 41.3 30.4 13.2 28.3

Weak UntrimmedNet [7] 7.4 3.9 1.2 3.6

Weak AutoLoc [6] 27.3 17.5 6.8 16.0

Weak W-TALC [2] 37.0 14.6 - 18.0

Weak Liu et al. [3] 36.8 - - 22.4

Weak 3C-Net [4] 37.2 23.7 9.2 21.7

Single-frame SF-Net (Ours) 37.8 24.6 10.3 22.8
Table 4. Segment localization results on ActivityNet1.2 validation set. The AVG in-
dicates the average mAP from IoU 0.5 to 0.95.

4.2 Loss coefficients

We also conduct experiments to analyze the hyper-parameters of each loss item
on the THUMOS14 in Table 3. The mean and standard deviation of segment
and frame metrics are reported. We ran each experiment three times. The single-
frame annotation for each video is randomly sampled from annotations by four
annotators. The default values of α and β are 1. We change one hyper-parameter
and fix the other one. From the Table 3, we observe that our model is not sensitive
to the hyper-parameters.

5 ActivityNet Simulation Experiment

We conduct experiments on ActiviytNet1.2 by randomly sampling single-frame
annotations from ground truth temporal boundaries. Table 4 presents the re-
sults on ActivityNet1.2 validation set. In this experiment, the annotations are
generated by randomly sampling single frame from ground truth segments. We
follow the standard evaluation protocal [1] by reporting the mean mAP scores
at different thresholds (0.5:0.05:0.95). On the large scale dataset, our proposed
method can still obtain a performance gain with single frame supervision.

6 Qualitative Results

We present the qualitative results on BEOID dataset in Figure 2. The first ex-
ample has two action instances: scan card and open door. Our model localizes
every action instance and classifies each action instance into the correct category.
The temporal boundary for each instance is also close to the ground-truth anno-
tation despite that we do not have any temporal boundary information during
training. For the second example, there are three different actions and total four
action instances. Our SF-Net has detected all the positive instances in the videos.
The drawback is that the number of detected segments for each action class is
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Fig. 2. Qualitative Results on BEOID dataset. GT denotes the ground truth and
the action segment is marked with blue. Our proposed method detects all the action
instances in the videos.

greater than the number of ground truth segments. To better distinguish actions
of different classes, the model should encode the fine-grained action information
from the target action area instead of the 1D feature directly extracted from the
whole frame. We will consider this in the future work.
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