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1 Pose6DoF Discriminator

Our Pose6DoF discriminator works by processing an input concatenated from a
fruxel model and an input image (see Figure 1). Different from modern volumet-
ric discriminators [1], that qualify the input voxel model as being either ‘real’ or
‘fake,’ our Pose6DoF discriminator estimates 6DoF poses of objects in the scene
and their perceptual realism. Hence, the architecture of our Pose6DoF discrim-
inator fuses a pose estimation model and a discriminator. The architecture of
our Pose6DoF discriminator is based on the inverted volumetric residual blocks.

Firstly, we concatenate the fruxel model (either real or predicted by genera-
tor) with the input image. We use ‘copy-inflate’ skip connections to match the
2D-3D dimensions. After that, our Pose6DoF processes the input using blocks of
3D inverted residual blocks. Finally, it produces a tensor with 16× 16× 16 cells.
Each cell contains five groups of parameters representing annotations of poses of
five objects the could be located in the cell. A single group of parameters includes
object’s pose t = {xc, yc, zc} in normalized fruxel space coordinates, object’s ro-
tation quaternion q = {q1, q2, q3, q4}, object’s dimensions d = {w, h, d}, and
the probability r of object being either ‘real’ or ‘fake.’ We cluster annotations
hypnotizes similar to [2].

2 SemanticVoxels Dataset

Our SemanticVoxels Dataset includes 116k samples of 3D and 2D data. Each
data sample represents a single camera pose. It consists of a color image, a
semantic frustum voxel model, a depth map, a camera pose, and an object pose
annotations for all classes. We made our dataset consistent with the NuScenes
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Fig. 1. Pose6DoF discriminator.

dataset format [3]. Our dataset is divided into two splits: real and synthetic. The
real split was generated using a Structure-from-Motion (SfM) technique similar
to [4]. It contains 16k images. Example scenes from the dataset are shown in
Figure 2.
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Fig. 2. Examples of color images with 6D pose annotations and ground truth semantic
voxel models from our SemanticVoxels dataset.
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3 Qualitative Evaluation

We present additional qualitative results of 3D reconstruction using DISN [5],
Pix2Vox [6], 3D-R2N2 [7], and our SSZ on our SemanticVoxels dataset in Figure 3.
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Fig. 3. Example of 3D reconstruction using DISN [5], Pix2Vox [6], 3D-R2N2 [7], and our
SSZ on our SemanticVoxels dataset.
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