
Supplementary Material:
Event-based Asynchronous

Sparse Convolutional Networks

Nico Messikommer∗, Daniel Gehrig?, Antonio Loquercio, and
Davide Scaramuzza

Dept. Informatics, Univ. of Zurich and
Dept. of Neuroinformatics, Univ. of Zurich and ETH Zurich

1 Supplementary Material

In the supplementary material, references which point to the main manuscript
will be referenced with a leading ”M-”. In Sec. 1.1 we describe an efficient recur-
sive method for computing the rulebook Rk,n in Eq. (M-7) and present the asyn-
chronous propagation of changes through events in algorithmic form in Tab. 1.
In Sec. 1.2 we present a proof of the equivalence of network outputs using asyn-
chronous and synchronous networks. In Sec. 1.3 we present additional details
about the input representations and FLOP calculations used in the experiments
in Sec. M-4. In Sec. 1.4 we present a sensitivity analysis where we vary the num-
ber of events used for training and justify our choice of 25’000 events for all
experiments. Finally, in Sec. 1.5 we show additional qualitative object detection
results.

1.1 Efficient Rulebook Update

At each layer the rulebook Rk,n and receptive field Fn are

Fn = {i− k|i ∈ Fn−1 and k ∈ Kn−1 if i− k ∈ At}
Rk,n = {(i, i− k)|i ∈ Fn−1 if i− k ∈ At}.

At the input these are initialized as Rk,0 = ∅ and F0 = {u′i}. The propagation
of these two data structures is illustrated in Fig. M-2. We observe that at each
layer the rulebook and receptive field can be computed by reusing the data from
the previous layer. We can do this by decomposing the receptive field into a
frontier set fn (Fig. M-2 (a) magenta sites)and visited state set Fn (Fig. M-2
(a) green sites). At each layer Fn = fn ∪ Fn. To efficiently update both Fn and
Rk,n at each layer we only consider the rules that are added due to inputs in
the frontier set (Fig. M-2 (a), magenta lines). These can be appended to the
existing rulebook. In addition, the receptive field Fn can be updated similarly,
by adding new update sites reached from the frontier set. This greatly reduces
the sites that need to be considered in the computation of Rk,n and Fn in Eqs.
(M-6) and (M-7).

? Equal contribution

2 N. Messikommer et al.

1.2 Equivalence of Synchronous and Asynchronous Updates

We start with Eq. (M-4), which we repeat here:

ỹtn+1(u, c) =

bn(c) +

∑
c′

∑
k∈Kn

∑
(i,u)∈Rt,k

Wn(k, c′, c)ytn(i, c′), for u ∈ At

0 else

ytn+1 = σ(ỹtn+1)

Here the input layer is yt0(u, c) = HtN (u, c). In a next step we assume changes
to the input layer as in Eq. (M-3). These changes occur at sites ui ∈ F0 with
magnitude ∆i(c) = yt+1

0 (ui, c) − yt0(ui, c). The sites ui can be categorized into
three groups: sites that are and remain active, sites that become inactive (feature
becomes 0) and sites that become active. We will now consider how yt+1

n (u, c)
evolves:

ỹt+1
1 (u, c) = b0(c) +

∑
c′

∑
k∈K0

∑
(i,u)∈Rt+1,k

Wn(k, c′, c)yt+1
0 (i, c′) (1)

= b0(c) +
∑
c′

∑
k∈K0

∑
(i,u)∈Rt+1,k

W0(k, c′, c)
(
yt0(i, c′) +∆(i, c′)

)
(2)

(3)

Here we define the increment ∆0(u, c). This increment is only non-zero for sites
at which the input yt0(i, c) changed, so for (i,u) ∈ Rt+1,k such that i ∈ F0. At
time t+ 1 the rulebook Rt+1,k is modified for every site uj that becomes newly
active:

Rt+1,k = Rt,k ∪
⋃
j

{(uj + k,uj)|uj + k ∈ At+1} ∪ {(uj ,uj − k)|uj − k ∈ At}

and every site ul that becomes inactive

Rt+1,k = Rt,k\
⋃
l

{(ul + k,ul)|ul + k ∈ At} ∪ {(ul,ul − k)|ul − k ∈ At+1}

For both newly active and newly inactive site we may ignore the first term in
the union since these correspond to rules that influence the output sites uj and
ul. In Fig. M-2 (b) and (c) these rules would correspond to lines leading from
input sites (top layer) to the newly active (blue) or newly inactive (white) sites.
However, the outputs at these sites can be computed using Eq. (M-4) for newly
active sites and simply set to 0 for newly inactive sites, and so we ignore them
in updating the next layer. What remains are the contributions of the second
term in the union which correspond to the magenta lines in the top layer of Fig.
M-2 (b) and (c), which we define as rk,act and rk,inact respectively.

Event-based Asynchronous Sparse Convolutional Networks 3

If we restrict the output sites u to be sites that remain active, we may expand
Eq. (1) as:

ỹt+1
1 (u, c) =b0(c) +

∑
c′

∑
k∈K0

∑
(i,u)∈Rt+1,k

W0(k, c′, c)
(
yt0(i, c′) +∆(i, c′)

)
=b0(c) +

∑
c′

∑
k∈K0

∑
(i,u)∈Rt,k

W0(k, c′, c)
(
yt0(i, c′) +∆(i, c′)

)
−
∑
c′

∑
k∈K0

∑
(i,u)∈rk,inact

W0(k, c′, c)
(
yt0(i, c′) +∆(i, c′)

)︸ ︷︷ ︸
=0 for i=ul

+
∑
c′

∑
k∈K0

∑
(i,u)∈rk,act

W0(k, c′, c)(yt0(i, c′)︸ ︷︷ ︸
=0 for i=uj

+∆(i, c′))

Where we have used the fact that at newly inactive sites yt0(i, c′) +∆(i, c′) = 0
and at newly active sites yt0(i, c′) = 0. This can be simplified as:

ỹt+1
1 (u, c) =b0(c) +

∑
c′

∑
k∈K0

∑
(i,u)∈Rt,k

W0(k, c′, c)
(
yt0(i, c′) +∆(i, c′)

)
+
∑
c′

∑
k∈K0

∑
(i,u)∈rk,act

W0(k, c′, c)∆(i, c′)

= b0(c) +
∑
c′

∑
k∈K0

∑
(i,u)∈Rt,k

W0(k, c′, c)yt0(i, c′)

︸ ︷︷ ︸
yt
1(u,c)

+
∑
c′

∑
k∈K0

∑
(i,u)∈Rt,k

W0(k, c′, c)∆0(i, c′)

+
∑
c′

∑
k∈K0

∑
(i,u)∈rk,act

W0(k, c′, c)∆0(i, c′)

=yt1(u, c) +
∑
c′

∑
k∈K0

∑
(i,u)∈Rt,k∪rk,act

W0(k, c′, c)∆0(i, c′)

It remains to find the rules (i,u) in Rt,k ∪ rk,act which have a non-zero contri-
bution to the sum, i.e. for which ∆0(i, c′) is non-zero. The increment is exactly
non-zero for i ∈ F0, corresponding to the input site affected by the new event.
Note that this site could either (i) remain active (input for rule in Rt,k), (ii)
become inactive (input for rule in Rt,k) or (iii) become active (input for rule
in rk,act)). Therefore, the rules that have a non-zero contribution are the ones
drawn as magenta lines in the top row of Fig. M-2 (a), (b) and (c) respectively,
where we ignore rules with newly active or inactive sites output sites. These
rules also correspond exactly to Rk,1 defined in Eq. M-7. The resulting update
equation becomes:

ỹt+1
1 (u, c) =yt1(u, c) +

∑
c′

∑
k∈K0

∑
(i,u)∈Rk,1

W0(k, c′, c)∆0(i, c′)

4 N. Messikommer et al.

This is exactly Eq. (M-9). By applying the non-linearity we arrive at Eq. (M-10).
Now let us consider how the update propagates to the next layer. For this

we need to find F1, i.e. the input sites of layer 1 that change. These are exactly
the updated output sites of layer 0. Every i ∈ F0 affects the output site u for
which (i,u) ∈ Rk,1. To be part of this rulebook u = i − k and so we see that
i− k ∈ F1 for all k ∈ K0, which is exactly mirrored by Eq. (M-7).

To propagate updates through layer 1 we thus repeat the steps up until now,
but only consider changes at sites F1 instead of F0. By iterating this procedure,
all layers of the network can be updated. This concludes the proof.

1.3 Representations and FLOP computation

Representations As the proposed asynchronous framework does not require
any specific input representation, we evaluate two event embeddings, which are
sparse in time and space. The two event representations tested for both tasks are
the event histogram [1] and the event queue [2]. The former creates a two-channel
image by binning events with positive polarity to the first channel and events
with negative polarity to the second channel. This histogram is created for a
sliding window containing a constant number of events. Therefore, if an event
enters or leaves the sliding window, an update site is created and propagated
through the network. The second representation called event queue [2] is applied
in a sliding window fashion as well. The event queue stores the timestamps
and polarities of the incoming events in a queue at the corresponding image
locations. The queues have a fixed length of 15 entries and are initialised with
zeros. If a queue is full, the oldest event is discarded. The four dimensional tensor
containing the timestamps and polarities of up to 15 events is reshaped to a three
dimensional tensor by concatenating the timestamps and polarities along the 15
entries. The resulting three dimensional tensor has two spatial dimensions and
a channel dimension with 30 entries.

FLOP computation Tab. 1 shows the number of FLOPs to perform different
operation in the network for standard networks and our method. The FLOPs

Dense Layer Sparse Layer

Convolution HoutWoutcout(2k
2cin − 1) Nrcin(2cout + 1)

Max Pooling HoutWoutcoutk
2 Nacoutk

2

Fully Connected 2cincout 2cincout

ReLU HoutWoutcin Nacin

Table 1: FLOPs computation at each layer. Here Nr are the number of rules at that
layer and Na are the number of active sites.

needed for a standard convolution is HoutWoutcout(2k
2cin − 1) excluding bias.

Event-based Asynchronous Sparse Convolutional Networks 5

This is the result of performing k2cin multiplications and k2cin− 1 additions for
each pixel and each output channel resulting in the term found in the table. For
our asynchronous sparse formulation we compute the number of operations by
following Eqs. (M-8) and (M-9). Computing the differences in Eq. (M-8) results
in Nrcin operations, where Nr are the number of rules at that layer. The convo-
lution itself uses Nrcin multiplications and Nr(cin− 1) additions for each output
channel, resulting in a total of coutNr(2cin−1) operations. Finally, from Eq. (M-
9) additional Nrcout operations need to be expended to add these increments to
the previous state. In total, this results in Nrcin(2cout + 1) operations.

1.4 Sensitivity on the Number of Events

Tab. 2 shows the computational complexity in MFLOPS and test accuracy on N-
Caltech101[3] for both sparse and dense VGG13. The table shows that the test
accuracy is maximized at 25’000 events for the sparse network and reaches a
plateau for the dense network. At this number of events amount of computation
in the sparse network is 46% lower than for the dense network. For this reason
we selected 25’000 events for all our further experiments in the main manuscript.

64 256 5000 25000 50000

Accuracy MFLOP Accuracy MFLOP Accuracy MFLOP Accuracy MFLOP Accuracy MFLOP

Dense VGG13 0.257 1621.2 0.456 1621.2 0.745 1621.2 0.761 1621.2 0.766 1621.2
Sparse VGG13 0.247 224.2 0.435 381.0 0.734 697.5 0.745 884.2 0.730 959.2

Table 2: Computational complexity and test accuracy on N-Caltech101[3] for sparse
and dense VGG13 and a varying number of events.

1.5 Qualitative Results on Object Detection

Here we show qualitative results of our method applied to the task of event-based
object detection (Sec. M-4.2 and Tab. 4 in the main manuscript). Failure cases of
our approach include very similar classes, such as ”rooster” and ”pigeon” in the
third column. In the Gen1 Automotive dataset it can be seen that our approach
works well for cars that are close and have a high relative motion. However,
some cars are missed, especially if they have small relative speed and thereby
only trigger few events (Fig. 1, bottom right).

6 N. Messikommer et al.

N
-C

a
lt
ec
h
1
0
1
[3
]

G
en

1
A
u
to
.
[4
]

Fig. 1: Qualitative results of object detection (best viewed in color). Our predictions
are shown in magenta, and labels in cyan. The first two columns present success cases,
while the last column a failure case. On the first dataset, our method is mainly fooled
by similar classes, such as ”pigeon” and ”rooster”. In the second dataset, our approach
detects cars generally well, but fails to detect the ones moving at similar speed due to
the low event rate (bottom right).

Algorithm 1 Asynchronous Sparse Convolution at layer n

Update Active Sites
if the first layer (n = 1) then

- Update the active set At with all new active and new inactive sites
- Initialize the rulebook Rk,0 = ∅ and receptive field F0 = {ui}i.

end if

Update rulebook and receptive field
- compute Rk,n using Eq. (M-7) with Fn−1

- compute Fn using Eq. (M-6) with Fn−1.

Layer update
for all u in Fn do

if u remains an active site then
- compute increment ∆n using Eq. (M-8) with ytn−1 and yt−1

n−1

- compute activation ỹtn using Eq. (M-9) with ∆n and ỹt−1
n

end if
if u is newly active then

- compute activation ỹtn using Eq. (M-4) with ytn−1

end if
if u is newly inactive then

- set activation ỹtn to 0
end if
- compute ytn by applying a non-linearity as in Eq. (M-10)

end for

Event-based Asynchronous Sparse Convolutional Networks 7

References

1. A. I. Maqueda, A. Loquercio, G. Gallego, N. Garćıa, and D. Scaramuzza, “Event-
based vision meets deep learning on steering prediction for self-driving cars,” in
IEEE Conf. Comput. Vis. Pattern Recog. (CVPR), 2018, pp. 5419–5427.

2. S. Tulyakov, F. Fleuret, M. Kiefel, P. Gehler, and M. Hirsch, “Learning an event
sequence embedding for dense event-based deep stereo,” in Int. Conf. Comput. Vis.
(ICCV), Oct. 2019.

3. G. Orchard, A. Jayawant, G. K. Cohen, and N. Thakor, “Converting static image
datasets to spiking neuromorphic datasets using saccades,” Front. Neurosci., vol. 9,
p. 437, 2015.

4. P. de Tournemire, D. Nitti, E. Perot, D. Migliore, and A. Sironi, “A large scale
event-based detection dataset for automotive,” ArXiv, vol. abs/2001.08499, 2020.

