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1 Overview

In this supplementary material, we first provide the detailed structures of the
proposed IntegralNet and GateNet in Section 2. We present further analysis
and discussion on each component of the proposed method in Section 3. We
give a comprehensive quantitative evaluation in Section 4. We show additional
results on video deblurring on synthetic and real data in Section 5 and Section 6,
respectively. Finally, we provide more visual comparisons on simultaneous video
deblurring and interpolation on real-world blurry videos in Section 7.

2 Network Architecture

The proposed event-driven video deblurring and interpolation algorithm consists
of two sub-networks: 1) an IntegralNet, which contains event feature extraction,
dynamic filter generation and multi-residual prediction, to estimate the residuals
D between blurry and sharp frames as well as those I between sharp images,
2) a GateNet to predict the weights for fusing the initial reconstructed results
in an adaptive selection manner. Table 1, Table 2, Table 3 and Table 4 list the
configurations of the three modules of IntegralNet and GateNet, respectively.
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Table 1. Configurations of the event feature extraction module in IntegralNet. ‘Conv’
denotes the convolution layer. ‘Res’ denotes the residual block including two convolu-
tion layers. ‘C(·)’ denotes the concatenation operation. Ei−1, Ei denote the previous
and current events which are firstly divided into 2N equal-time-interval bins and fur-
ther each bin is divided into M equal-size chunks, stacked as 2MN-channel features for
2N-time video reconstruction. Ui denotes the extracted features.

Layer Input Output In Channel Out Channel Kernel Size Stride

Conv1 C(Ei, Ei−1) conv1 4MN 64 3× 3 1
Res1 1 conv1 res1 1 64 64 3× 3 1
Res1 2 res1 1 res1 2 64 64 3× 3 1
Conv2 res1 2 conv2 64 96 3× 3 2
Res2 1 conv2 res2 1 96 96 3× 3 1
Res2 2 res2 1 res2 2 96 96 3× 3 1
Conv3 res2 2 conv3 96 128 3× 3 2
Res3 1 conv3 res3 1 128 128 3× 3 1
Res3 2 res3 1 Ui 128 128 3× 3 1

Table 2. Configurations of the dynamic filter generation module in IntegralNet. The
network inputs the previous and current blurry frames Bi−1, Bi, corresponding events
Ei−1, Ei and the previously recovered sharp frames Si−1,j . And it outputs the dy-
namic filters denoted as Fi with size K ×K × 1. ‘Conv’ denotes the convolution layer.
‘Res’ denotes the residual block including two convolution layers. ‘C(·)’ denotes the
concatenation operation.

Layer Input Output In Channel Out Channel Kernel Size Stride

Conv1 C(Bi, Bi−1, Ei, Ei−1, Si−1,j) kconv1 2+4MN+2N 64 3× 3 1
Res1 1 kconv1 kres1 1 64 64 3× 3 1
Res1 2 kres1 1 kres1 2 64 64 3× 3 1
Conv2 kres1 2 kconv2 64 96 3× 3 2
Res2 1 kconv2 kres2 1 96 96 3× 3 1
Res2 2 kres2 1 kres2 2 96 96 3× 3 1
Conv3 kres2 2 kconv3 96 128 3× 3 2
Res3 1 kconv3 kres3 1 128 128 3× 3 1
Res3 2 kres3 1 kres3 2 128 128 3× 3 1
Conv4 kres3 2 kconv4 128 128×K ×K 1× 1 1
Reshape kconv4 Fi - - - -
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Table 3. Configurations of the multi-residual prediction module in IntegralNet. ‘Conv’
denotes the convolution layer. ‘Res’ denotes the residual block including two convo-
lution layers. ‘Deconv’ denotes the transposed convolution layer. ‘C(·)’ denotes the
concatenation operation. Vi denotes the transformed event features via Eq. (5) (Please
see the original paper). Di→i,0 denotes the residual between the blurry image and the
keyframe. Ii−1,j→i,0;j∈(−N,N ] denotes the residuals between the 2N previously recov-
ered sharp frames and the current sharp keyframe. Ii,0→i,j;j 6=0 denotes the residuals
between the latent keyframe and the 2N − 1 interpolated frames.

Layer Input Output In Channel Out Channel Kernel Size Stride

Deconv3 Vi updeconv3 128 96 4× 4 2
Conv3 C(updeconv3,res2 2) upconv3 192 96 3× 3 1
Res3 2 upconv3 upres3 2 96 96 3× 3 1
Res3 1 upres3 2 upres3 1 96 96 3× 3 1
Deconv2 upres3 1 updeconv2 96 64 4× 4 2
Conv2 C(updeconv2,res1 2) upconv2 128 64 3× 3 1
Res2 2 upconv2 upres2 2 64 64 3× 3 1
Res2 1 upres2 2 upres2 1 64 64 3× 3 1

Conv1 D upres2 1 upconv1 d 64 32 3× 3 1
Res1 2 D upconv1 d upres1 2 d 32 32 3× 3 1
Res1 1 D upres1 2 d upres1 1 d 32 32 3× 3 1
Conv0 D upres1 1 d Di→i,0 32 1 3× 3 1

Conv1 I1 upres2 1 upconv1 i1 64 32 3× 3 1
Res1 2 I1 upconv1 i1 upres1 2 i1 32 32 3× 3 1
Res1 1 I1 upres1 2 i1 upres1 1 i1 32 32 3× 3 1
Conv0 I1 upres1 1 i1 Ii−1,j→i,0 32 2N 3× 3 1

Conv1 I2 upres2 1 upconv1 i2 64 32 3× 3 1
Res1 2 I2 upconv1 i2 upres1 2 i2 32 32 3× 3 1
Res1 1 I2 upres1 2 i2 upres1 1 i2 32 32 3× 3 1
Conv0 I2 upres1 1 i2 Ii,0→i,j 32 2N-1 3× 3 1

Table 4. Configurations of GateNet. GateNet inputs the blurry input Bi, the corre-
sponding events Ei and initial recovered frames Fi,j,k;j∈(−N,N ],k∈[0,2N ]. And it outputs
a gate map for an adaptive selection, denoted as Mi,j,k;j∈(−N,N ],k∈[0,2N ]. ‘3DConv’
denotes the 3D convolution layer. Please see the original paper for more details.

Layer Input Output In Channel Out Channel Kernel Size Stride

Reshape Bi, Ei, Fi,j,k In - - - -
3DConv1 In 3dconv1 M+2N+2 64 3× 3× 3 1
3DConv2 3dconv1 3dconv2 64 64 3× 3× 3 1
3DConv3 3dconv2 3dconv3 64 2N+1 3× 3× 3 1
Sigmoid 3dconv3 Mi,j,k - - - -
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3 Analysis and Discussion

In this section, we give further discussions on the effectiveness of each component
in our event-driven video deblurring and interpolation network.

3.1 Effectiveness of Physical-Based Framework

The proposed algorithm is designed based on the physical model of the event-
based video reconstruction. We predict the residuals I and D and apply multiply
operation to them according to Eq. 2 and Eq. 4 (Please see the original paper
for details). To demonstrate the effectiveness of the physical-based framework,
we conduct an experiment that adds the residuals and the intensity images up,
as already used in pure image-based algorithms (denoted as ‘Addition’). More
visual comparisons are illustrated in Fig. 1. ‘Addition’ predicts blurry addition
residuals (Fig. 1 (b)) and thus generates smooth results but with more artifacts
finally (Fig. 1 (e)). However, as the proposed method is based on the physical
model, which makes it easy to calculate the multiplication residuals (Fig. 1 (c))
from event data, it is robust to severely-blurred frames and restores images with
more details and fewer artifacts (Fig. 1(f)).

Fig. 1. Visual comparison with ‘Addition’. (a) is the blurry input, while (d) is the
ground truth. ‘Addition’ replaces multiplication with addition. ‘Res-’ in (b)(c) denote
the learned residuals between the keyframes and the interpolated frames. The pro-
posed method makes it easy to predict multiplication residuals and restores sharper
results with finer details, which demonstrates the effectiveness of the physical-based
framework.
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3.2 Effectiveness of Dynamic Filtering

To handle the events triggered by the spatially variant threshold, we propose to
integrate the dynamic filters when estimating residuals. To validate the above
discussions, we remove the dynamic filter generation module and feed its inputs
(Si−1, Si, Ei−1, Ei, Si−1) into the event feature extraction directly for a fair com-
parison (denoted as ‘w/o DF’). More visual comparisons between our method
and ‘w/o DF’ are illustrated in Fig. 2. Due to the lack of compensation for the
spatially variant triggering threshold, it provides overly-smooth residuals (see
Fig. 2 (b)) compared to ours (see Fig. 2 (c)). And thus, it cannot restore the
missing details in the final results (see Fig. 2 (e)). Moreover, it introduces strong
accumulated noises, especially at edges.

Fig. 2. Visual comparison with ‘w/o DF’. (a) is the blurry input, while (d) is the
ground-truth frame. ‘Res-’ in (b)(c) denote the learned residuals between the keyframes
and the interpolated frames. ‘w/o DF’ represents removing the dynamic filtering. The
proposed method restores sharper residuals and thus generates clearer images with
more details and fewer artifacts, which demonstrates the effectiveness of dynamic fil-
tering.

Furthermore, to intuitively understand the dynamic filtering, we provide gen-
erated filters in Fig. 3. Given sharp frames and the respective events, the average
triggering thresholds can be inferred from Eq. 2 in the original paper as

c̄(x, y) =
log(Si′,j′(x, y)/Si,j(x, y))∑

tm∈Ωi,j→i′,j′
pm · 1(xm, ym, x, y)

. (1)
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As can be seen from Fig. 3 (e), the triggering thresholds are not uniform across
the image plane. The predicted filters in Fig. 3 (f) are spatially variant and
closely related to the average thresholds, which can facilitate to minimize the
effects of the non-uniform threshold.

Fig. 3. Effectiveness of dynamic filtering. (a)(b) are two latent sharp frames, and (d)
is the corresponding interval of events captured with an event camera. The average
threshold of each pixel in this interval (e) is estimated from (a)(b)(d) using Eq. 1. (f)
is the visualization of the generated filters that are spatially variant and closely related
to (e).

3.3 Effectiveness of Previous Information

We note that the existing event-based video deblurring and interpolation algo-
rithms [4,1] bring one blurry frame alive without considering additional informa-
tion that exists across adjacent frames. To validate the effectiveness of utilizing
previous information, we compare a method that only estimates the keyframes
Ci,0 from current blurry inputs without the ones Pi,0,j from the previously re-
covered frames (denoted as ‘w/o Pre’. Please see the original paper). The visual
comparisons shown in Fig. 4 indicate that involving previous information is more
effective for video deblurring and reconstruction.

3.4 Effectiveness of Frame Fusion

To integrate the 2N + 1 initial recovered results Fi,j,k in an adaptive selection
manner, the proposed frame fusion step utilizes the information from the blurry
frame, event data and the initial results to generate a gate map and then obtains
the final results by weighted summation. To demonstrate the effectiveness of this
design, we compare the method that removes the estimation of the gate map but
feeds the initial results into three 3D convolution layers directly to estimate the
final results (denoted as ‘w/o ASF’). We show more visual comparisons in Fig. 5.
The proposed method keeps finer details, which validates the effectiveness of the
proposed frame fusion.

Furthermore, initial results and gate maps are illustrated in Fig 5 as well. It
can be noted that as the frames inferred from the blurry images (Fig. 5 (c)) seem



Learning Event-Driven Video Deblurring and Interpolation 7

Fig. 4. Visual comparison with ‘w/o Pre’. (a) is the blurry input, while (b) is the
ground-truth frame. ‘w/o Pre’ represents removing the previous information in the
keyframe estimation step. The proposed method restores sharper results with finer
details, which demonstrates the effectiveness of previous information.

Fig. 5. Visual comparison with ‘w/o ASF’. (a) blurry input. (b) our reconstruction
results. (c) initial results estimated from blurry inputs. (d) an example of initial results
estimated from the previous recovered frames. (e) ground truth. (f) reconstruction re-
sults of ‘w/o ASF’ which removes the adaptively-selected fusion. (g)(h) corresponding
gate maps of (c)(d). The proposed method can integrate the initial results in an adap-
tive selection scheme and keep more details, which demonstrates the effectiveness of
our frame fusion.
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photorealistic but blurry at edges, the gate map tends to 0 at edges but 1 for
other regions (Fig. 5 (g)). Instead, the ones from the last recovered frames are
sharp with more details but contain significant artifacts (Fig. 5 (d)), thus the
gate map tends to 1 at edges but 0 for other places (Fig. 5 (h)). The proposed
frame fusion module can integrate the initial results in an adaptive selection
scheme and keep more details, which is more effective for video reconstruction.

4 Comprehensive Quantitative Evaluation

In this section, we give comprehensive comparison against the state-of-the-art
algorithms, including STFAN [7], TNTT [2], E2V [5], BHA [4] and LEMD [1]. To
demonstrate the effectiveness of the proposed framework, we further compare the
enhanced version of the single-sensor algorithms (denoted as *) which feed both
event and intensity data into networks. BHA runs on an Intel Xeon E5 CPU and
other algorithms run on a GeForce GTX 1080 GPU. Table 5 shows quantitative
results in terms of average PSNR, SSIM, model size and running time. The
proposed network performs favorably against the state-of-the-art algorithms.
Moreover, it contains smaller model size and it is more effective than the most
of the state-of-the-art algorithms except E2V and E2V*.

Table 5. Video deblurring and reconstruction performance on the synthetic subset of
Blur-DVS [1], in terms of average PSNR, SSIM, parameter numbers (×106) of different
networks and running time (ms per recovered frame) with image size of 180× 240.

Average results of video deblurring

Methods E2V[5] E2V* STFAN[7] STFAN* BHA[4] LEMD[1] Ours

PSNR 16.89 24.81 19.03 30.18 22.43 26.48 30.57

SSIM 0.597 0.790 0.518 0.897 0.715 0.839 0.904

Params (M) 10.71 10.71 5.36 5.38 - 5.37 4.80

Time (ms) 4.33 4.36 11.49 11.53 205.14 26.27 14.17

Average results of video deblurring and interpolation

Methods E2V[5] E2V* TNTT[2] TNTT* BHA[4] LEMD[1] Ours

PSNR 16.60 24.10 19.05 29.02 22.06 25.33 29.65

SSIM 0.587 0.777 0.521 0.875 0.699 0.827 0.890

Params (M) 10.71 10.71 10.68 10.88 - 9.13 5.00

Time (ms) 4.33 4.36 7.36 7.90 57.13 13.13 4.68
* denotes the enhanced version of the corresponding single-sensor algorithm. See text for more details.
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5 More Results on Synthetic Blurry Videos

In this section, we present additional comparisons with the state-of-the-art al-
gorithms, including STFAN [7], E2V [5], BHA [4], CIE [6] and LEMD [1], on
GoPro [3] and the synthetic subset of Blur-DVS [1]. To demonstrate the effec-
tiveness of the proposed framework, we further compare the enhanced versions
of the single-sensor algorithms. STFAN* feeds additional event data into the
spatio-temporal filter adaptive module of STFAN to assist frame alignment and
deblurring. E2V* feeds events together with intensity frames into E2V for each of
its recurrent reconstruction step. The compared methods as well as the enhanced
variants are trained with hybrid inputs following the corresponding released pro-
cedures. The proposed method generates much sharper results with fewer noises
and artifacts.
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Fig. 6. Visual comparisons on video deblurring on the GoPro [3] dataset.
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Fig. 7. Visual comparisons on video deblurring on the GoPro [3] dataset.
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Fig. 8. Visual comparisons on video deblurring on the GoPro [3] dataset.
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Fig. 9. Visual comparisons on video deblurring on the synthetic subset of Blur-DVS [1].



14 S. Lin et al.

(a) Blur Input

(c) STFAN

(e) E2V

(g) BHA

(i) LEMD

(b) GT

(d) STFAN*

(f) E2V*

(h) CIE

(j) Ours

Fig. 10. Visual comparisons on video deblurring on the synthetic subset of Blur-
DVS [1].
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(a) Blur Input

(c) STFAN

(e) E2V

(g) BHA

(i) LEMD

(b) GT

(d) STFAN*

(f) E2V*

(h) CIE

(j) Ours

Fig. 11. Visual comparisons on video deblurring on the synthetic subset of Blur-
DVS [1].
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(a) Blur Input

(c) STFAN

(e) E2V

(g) BHA

(i) LEMD

(b) GT

(d) STFAN*

(f) E2V*

(h) CIE

(j) Ours

Fig. 12. Visual comparisons on video deblurring on the synthetic subset of Blur-
DVS [1].
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(a) Blur Input

(c) STFAN

(e) E2V

(g) BHA

(i) LEMD

(b) GT

(d) STFAN*

(f) E2V*

(h) CIE

(j) Ours

Fig. 13. Visual comparisons on video deblurring on the synthetic subset of Blur-
DVS [1].
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6 More Results on Real-World Blurry Videos

In this section, we present additional comparisons with the state-of-the-art algo-
rithms, including STFAN [7], E2V [5], BHA [4] and LEMD [1], on real-world
blurry videos [1,4]. To demonstrate the effectiveness of the proposed frame-
work, we further compare the enhanced versions of the single-sensor algorithms.
STFAN* feeds additional event data into the spatio-temporal filter adaptive
module of STFAN to assist frame alignment and deblurring. E2V* feeds events
together with intensity frames into E2V for each of its recurrent reconstruction
step. The compared methods as well as the enhanced variants are trained with
hybrid inputs following the corresponding released procedures. The proposed
method generates much cleaner results with more details and fewer noises and
artifacts.
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Fig. 14. Visual comparisons on video deblurring on the real subset of Blur-DVS [1].
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(a) Blur Input

(c) STFAN

(e) E2V

(g) BHA

(b) Ours

(d) STFAN*

(f) E2V*

(h) LEMD

real

Fig. 15. Visual comparisons on video deblurring on the real subset of Blur-DVS [1].



Learning Event-Driven Video Deblurring and Interpolation 21

(a) Blur Input

(c) STFAN

(e) E2V

(g) BHA

(b) Ours

(d) STFAN*

(f) E2V*

(h) LEMD

real

Fig. 16. Visual comparisons on video deblurring on the real subset of Blur-DVS [1].
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(a) Blur Input

(c) STFAN

(e) E2V

(g) BHA

(b) Ours

(d) STFAN*

(f) E2V*

(h) LEMD

real

Fig. 17. Visual comparisons on video deblurring on the real subset of Blur-DVS [1].
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(a) Blur Input

(c) STFAN

(e) E2V

(g) BHA

(b) Ours

(d) STFAN*

(f) E2V*

(h) LEMD

real

Fig. 18. Visual comparisons on video deblurring on the real subset of Blur-DVS [1].
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Fig. 19. Visual comparisons on video deblurring on the real-world blurry videos [4]
with camera shaking.
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Fig. 20. Visual comparisons on video deblurring on the real-world blurry videos [4]
with high-speed object motion.
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Fig. 21. Visual comparisons on video deblurring on the real-world blurry videos [4] in
a low lighting condition.
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Fig. 22. Visual comparisons on video deblurring on the real-world blurry videos [4] in
a complex dynamic condition.
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7 More Results on Video Reconstruction

In this section, we present additional comparisons on simultaneous video de-
blurring and interpolation with the existing video reconstruction algorithms,
including BHA [4] and LEMD [1], on the synthetic and real-world blurry videos.
Moreover, to demonstrate the effectiveness of the proposed framework, we fur-
ther compare the enhanced versions of an image-based video reconstruction
method [2] (denoted as TNTT*). TNTT* feeds events and blurry intensity
frames into both keyframe deblurring network and frame interpolation network
of TNTT. The deep learning-based methods are trained with hybrid inputs fol-
lowing the corresponding released procedures. The proposed method generates
much cleaner results with more details and fewer noises and artifacts.

Fig. 23. Visual comparisons on video reconstruction on the GoPro [3] dataset.

Fig. 24. Visual comparisons on video reconstruction on the synthetic subset of Blur-
DVS [1].
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Fig. 25. Visual comparisons on video reconstruction on the real subset of Blur-DVS [1].
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Fig. 26. Visual comparisons on video reconstruction on the real-world blurry videos [4].
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Fig. 27. Visual comparisons on video reconstruction on the real-world blurry videos [4].
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(d) Ours(b) LEMD(a) BHA (c) TNTT*

114-120

Fig. 28. Visual comparisons on video reconstruction on the real-world blurry videos [4].
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41-46

(d) Ours(b) LEMD(a) BHA (c) TNTT*

Fig. 29. Visual comparisons on video reconstruction on the real-world blurry videos [4].
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182-187

(d) Ours(b) LEMD(a) BHA (c) TNTT*

Fig. 30. Visual comparisons on video reconstruction on the real-world blurry videos [4].
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(Click to start loading video.mov)

Fig. 31. Visual comparisons on video reconstruction on the real-world blurry videos [4].

(Click to start loading video.mov)

Fig. 32. Visual comparisons on video reconstruction on the real-world blurry videos [4].
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