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1 More Results

Depth prediction Figure 1 shows more visual results of our method, mvdepth-
net [4] and neuralrgbd [2]. Compared with mvdepthnet [4] and neuralrgbd [2],
our estimated depth map has less noise, sharper boundaries and spatially con-
sistent depth values, as can also be seen in the surface normal visualization.
Furthermore, the 3D point cloud exported from our estimated depth better pre-
serves global planar features (e.g. the wall corner in the first scene) and local
features (e.g. the head model and the keyboard in the second scene).

Surface normal accuracy In Figure 2, we show more visual results of sur-
face normals calculated from the estimated depth. Our method outperforms
GeoNet [3] , Yin et al. [5] and Kusupati et al. [1] qualitatively. Compared
with our model retrained using VNL, the normal values of our model trained
with the CNM constraint are more consistent and smoother in planar regions.
This indicates that CNM, which is a key novelty of our work, indeed contributes
significantly to the overall improvement of performance, as compared with VNL.

Video-based 3D reconstruction In Figure 3, more video-based 3D recon-
struction results are shown. For the white walls, the feature-less sofa and the
table, our reconstructed result is much better than the results by the other two
methods in terms of reconstruction quality of local and global structures.

2 Network structures

In this section, we illustrate the network structures used in our pipeline.

DepthNet. The structure of DepthNet is shown in Table 1, and we set D = 64
in our paper.

RefineNet. The structure of RefineNet is shown in Table 2, and we set D = 64
in our paper.
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Fig. 1. Depth comparison with mvdepthnet [4] and neuralrgbd [2].
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Fig. 2. Visual comparison of surface normal calculated from the estimated depth with
GeoNet [3], Yin et al. [5] and Kusupati et al. [1].
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Fig. 3. Comparison with neuralrgbd [2] and mvdepthnet [4] for 3D reconstruction
on scenes from ScanNet. (a) With ground truth depth; (b) With estimated depth and
confidence map from neuralrgbd; (c) With estimated depth from mvdepthnet; (d) With
our estimated depth and occlusion probability map. All reconstructions are done with
TSDF fusion [6].
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Table 1. The structure of DepthNet, which is built on [4]

Name Layer components Layer input Output dimension

Input concat (initial cost volume, reference image) W ×H × 67

conv1
conv 2d(7 × 7, ch in = 67, ch out = 128, stride = 1), BN,ReLU
conv 2d(7 × 7, ch in = 128, ch out = 128, stride = 2), BN,ReLU

Input 1
2
W × 1

2
H × 128

conv2
conv 2d(5 × 5, ch in = 128, ch out = 256, stride = 1), BN,ReLU
conv 2d(5 × 5, ch in = 256, ch out = 256, stride = 2), BN,ReLU

conv1 1
4
W × 1

4
H × 256

conv3
conv 2d(3 × 3, ch in = 256, ch out = 512, stride = 1), BN,ReLU
conv 2d(3 × 3, ch in = 512, ch out = 512, stride = 2), BN,ReLU

conv2 1
8
W × 1

8
H × 512

conv4
conv 2d(3 × 3, ch in = 512, ch out = 512, stride = 1), BN,ReLU
conv 2d(3 × 3, ch in = 512, ch out = 512, stride = 2), BN,ReLU

conv3 1
16
W × 1

16
H × 512

conv5
conv 2d(3 × 3, ch in = 512, ch out = 512, stride = 1), BN,ReLU
conv 2d(3 × 3, ch in = 512, ch out = 512, stride = 2), BN,ReLU

conv4 1
32
W × 1

32
H × 512

upconv5
bilinear upsample

conv 2d(3 × 3, ch in = 512, ch out = 512), BN,ReLU
conv5 1

16
W × 1

16
H × 512

iconv5 conv 2d(3 × 3, ch in = 1024, ch out = 512), BN,ReLU concat (upconv5,conv4) 1
16
W × 1

16
H × 512

upconv4
bilinear upsample

conv 2d(3 × 3, ch in = 512, ch out = 512), BN,ReLU
iconv5 1

8
W × 1

8
H × 512

iconv4 conv 2d(3 × 3, ch in = 1024, ch out = 512), BN,ReLU concat (upconv4,conv3) 1
8
W × 1

8
H × 512

depth4
conv 2d(3 × 3, ch in = 512, ch out = 1), Sigmoid

bilinear upsample
iconv4 1

4
W × 1

4
H × 1

upconv3
bilinear upsample

conv 2d(3 × 3, ch in = 512, ch out = 256), BN,ReLU
iconv4 1

4
W × 1

4
H × 256

iconv3 conv 2d(3 × 3, ch in = 513, ch out = 256), BN,ReLU concat (upconv3,conv2,depth4) 1
4
W × 1

4
H × 256

depth3
conv 2d(3 × 3, ch in = 256, ch out = 1), Sigmoid

bilinear upsample
iconv3 1

2
W × 1

2
H × 1

upconv2
bilinear upsample

conv 2d(3 × 3, ch in = 256, ch out = 128), BN,ReLU
iconv3 1

2
W × 1

2
H × 128

iconv2 conv 2d(3 × 3, ch in = 257, ch out = 128), BN,ReLU concat (upconv2,conv1,depth3) 1
2
W × 1

2
H × 128

depth2
conv 2d(3 × 3, ch in = 128, ch out = 1), Sigmoid

bilinear upsample
iconv2 W ×H × 1

upconv1
bilinear upsample

conv 2d(3 × 3, ch in = 128, ch out = 64), BN,ReLU
iconv2 W ×H × 64

iconv1 conv 2d(3 × 3, ch in = 65, ch out = 64), BN,ReLU concat (upconv1,depth2) W ×H × 64

depth1 conv 2d(3 × 3, ch in = 64, ch out = 1), Sigmoid iconv1 W ×H × 1

Output depth1 W ×H × 1
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Table 2. The structure of RefineNet.

Name Layer components Layer input Output dimension

Input
concat (averaged cost volume,

initial depths, the diffrence of initial depths)
W ×H × 67

conv1
conv 2d(3 × 3, ch in = 67, ch out = 128, stride = 1), BN,ReLU
conv 2d(3 × 3, ch in = 128, ch out = 128, stride = 2), BN,ReLU

Input 1
2
W × 1

2
H × 128

conv2
conv 2d(3 × 3, ch in = 128, ch out = 256, stride = 1), BN,ReLU
conv 2d(3 × 3, ch in = 256, ch out = 256, stride = 2), BN,ReLU

conv1 1
4
W × 1

4
H × 256

conv3
conv 2d(3 × 3, ch in = 256, ch out = 512, stride = 1), BN,ReLU
conv 2d(3 × 3, ch in = 512, ch out = 512, stride = 2), BN,ReLU

conv2 1
8
W × 1

8
H × 512

Depth refinement branch

upconv3 d
bilinear upsample

conv 2d(3 × 3, ch in = 512, ch out = 256), BN,ReLU
conv3 1

4
W × 1

4
H × 256

iconv3 d conv 2d(3 × 3, ch in = 512, ch out = 256), BN,ReLU concat (upconv3 d,conv2) 1
4
W × 1

4
H × 256

upconv2 d
bilinear upsample

conv 2d(3 × 3, ch in = 256, ch out = 128), BN,ReLU
iconv3 d 1

2
W × 1

2
H × 128

iconv2 d conv 2d(3 × 3, ch in = 256, ch out = 128), BN,ReLU concat (upconv2 d,conv1) 1
2
W × 1

2
H × 128

upconv1 d
bilinear upsample

conv 2d(3 × 3, ch in = 128, ch out = 64), BN,ReLU
iconv2 d W ×H × 64

iconv1 d conv 2d(3 × 3, ch in = 64, ch out = 64), BN,ReLU upconv1 d W ×H × 64

depth conv 2d(3 × 3, ch in = 64, ch out = 1), Sigmoid iconv1 d W ×H × 1

Occlusion probability prediction branch

upconv3 p
bilinear upsample

conv 2d(3 × 3, ch in = 512, ch out = 256), BN,ReLU
conv3 1

4
W × 1

4
H × 256

iconv3 p conv 2d(3 × 3, ch in = 512, ch out = 256), BN,ReLU concat (upconv3 p,conv2) 1
4
W × 1

4
H × 256

upconv2 p
bilinear upsample

conv 2d(3 × 3, ch in = 256, ch out = 128), BN,ReLU
iconv3 p 1

2
W × 1

2
H × 128

iconv2 p conv 2d(3 × 3, ch in = 256, ch out = 128), BN,ReLU concat (upconv2 p,conv1) 1
2
W × 1

2
H × 128

upconv1 p
bilinear upsample

conv 2d(3 × 3, ch in = 128, ch out = 64), BN,ReLU
iconv2 p W ×H × 64

iconv1 p conv 2d(3 × 3, ch in = 64, ch out = 64), BN,ReLU upconv1 p W ×H × 64

probability conv 2d(3 × 3, ch in = 64, ch out = 1), Sigmoid iconv1 p W ×H × 1

Output depth and probability W ×H × 1
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