
Modeling 3D Shapes by Reinforcement Learning
Supplementary Material

Cheng Lin1,2, Tingxiang Fan1, Wenping Wang1, and Matthias Nießner2

1 The University of Hong Kong
2 Technical University of Munich

1 Network Architecture

Fig. 1 and Fig. 2 show the detailed architecture of the Prim-Agent and the Mesh-
Agent respectively. We also indicate the shape of the tensor output from each
layer.

Conv(3*3, 1→16, padding=1) 16*128*128

Relu(BN(MaxPool(5*5)) 16*25*25

Conv(3*3, 16→32, padding=1) 32*25*25

Relu(BN(MaxPool(3*3)) 32*8*8

Conv(3*3, 32→64, padding=1) 64*8*8

Relu(BN(MaxPool(3*3)) 64*2*2

Flatten 256

Relu(FC(162→128) 128

Relu(FC(128→256) 256

Relu(FC(300→256) 256

Relu(FC(768→768) 768

Relu(FC(768→1024) 1024

FC(1024→756) 756

Depth map 
1*128*128

Primitives 
162(=27*6)

Step (300)

Output 
756=(27*(2*3+1)*4)

Concat

Layers Tensor shape

Fig. 1. The detailed network architecture of the Prim-Agent. BN: Batch Normalization
Layer; FC: Fully Connected Layer.



2 C. Lin et al.

Conv(3*3, 1→16, padding=1) 16*128*128

Relu(BN(MaxPool(5*5)) 16*25*25

Conv(3*3, 16→32, padding=1) 32*25*25

Relu(BN(MaxPool(3*3)) 32*8*8

Conv(3*3, 32→64, padding=1) 64*8*8

Relu(BN(MaxPool(3*3)) 64*2*2

Flatten 256

Relu(FC(80→128) 128

Relu(FC(128→256) 256

Relu(FC(100→256) 256

Relu(FC(768→768) 768

Relu(FC(768→1024) 1024

FC(1024→360) 360

Depth map 
1*128*128

Edge loops 
80(=10*2*4)

Step (100)

Output 
(360=10*2*3*6)

Concat

Layers Tensor shape

Fig. 2. The detailed network architecture of the Mesh-Agent. BN: Batch Normalization
Layer; FC: Fully Connected Layer. The feature dimension of a loop point is 4, i.e.,
(xl, yl, zl, a) where a ∈ {0, 1, 2} additionally indicates the axis the loop plane is vertical
to.

2 Illustration of the Choices of Method Design

2.1 Solution Space Reduction

We should note that it is not trivial for an RL agent to learn to model 3D
shapes. The biggest challenge is that the action space has enormous modeling
operations, and many of them are irrelevant. In the paper, there are in total 1116
different actions and the network will be unrolled for 400 steps, which leads to a
huge solution space of 1116400. Therefore, the exploration to find good policies
will be extremely difficult. Here we summarize the key ideas to make this task
feasible.

Divide the solution space Inspired by the hierarchical understanding of
human modelers, we divide these operations into two categories, i.e., primitive-
based operations and mesh-based operations, to reinforce more connections be-
tween different actions. Therefore, we propose two sperate agents, i.e., Prim-
Agent and Mesh-Agent. The solution space is split down into 756300 and 360100

respectively for each step and the difficulty of learning is reduced as well.

Learn an initial policy As described in the paper, the agents are first trained
to imitate the demonstrations generated by heuristics. Second, with the learned
initial policy, the agents then learn in an RL paradigm by collecting the re-
wards. Since most of the actions in the huge solution space produce very poor



Modeling 3D Shapes by Reinforcement Learning Supplementary Material 3

performance which is meaningless, the initial policy can significantly reduce the
number of exploration of poor performance.

Restrict the actions in each step The strategies mentioned above can
already help the agents learn reasonable policies, but the training efficiency is
still fairly low. Also, we observe sometimes the agents are stuck at a state and
output repetitive actions; therefore, at each step, we force the agents to edit a
different primitive or loop from the last step.

To overcome these two issues, the strategy we adopt is that, at the kth step,
we force the agents to only choose the actions that can operate the ith primitive
(or loop), where i = k mod m and m is the number of the primitives (or loops).
The action space is further narrowed down in each step, and the agents will not
be stuck at a repetitive action.

2.2 Local IoU Reward

The local IoU reward encourages the Prim-Agent to make each primitive cover
more valid parts of a target shape, which will make the primitives overlap first.
Therefore, deleting an overlapped primitive will gain high sparsity reward with-
out losing much accuracy. Without the local IoU reward, since simplicity conflicts
with accuracy, the agents cannot be motivated to balance the parsimony and the
accuracy to give structurally meaningful and simple representations.

2.3 Double Replay Buffers for IL

If we only use one buffer, the expert’s new demonstrations are mixed together
with the old ones. This may lead to inadequate learning of the new experiences,
given that the old and new data are sampled together but the old ones are suffi-
ciently learned in previous iterations. Therefore, we propose to use two buffers:
the short-term replay buffer Ddemo

short is for learning the newest demonstrations,
while the long-term one Ddemo

long is for reviewing the histories. This is shown to
be more effective.

3 Virtual Expert Algorithm

We give the detailed algorithm of the virtual expert for the Prim-Agent in Al-
gorithm 1 with pseudo-code. We iteratively visit each primitive, test all the
potential actions for the primitive and execute the one which can obtain the
best reward. Note the selection of actions is divided into two stages: (1) during
the first half of the process, we do not consider any delete operations but only
edit the corners; (2) in the second half, deleting a primitive is allowed.

For the Mesh-Agent, we iteratively visit each edge loop, test all the potential
actions, and execute the one which can obtain the best reward. Note there is
only one stage for the “expert” of mesh editing.



4 C. Lin et al.

Algorithm 1: Virtual Expert for Primitive-based Shape Abstraction

Input: m cuboid primitives P = {P1, P2, ..., Pm}; target shape O; maximal
step Nmax

Output: a sequence of actions A = {a1, a2, ..., aN}
repeat

for each Pi ∈ P do
Step++
if Step ≤ 0.5 ∗Nmax then

find the action a which has the highest reward to tweak a cuboid
corner

else
find the action a which has the highest reward to tweak a cuboid
corner or delete a cuboid

execute and output the action a
update the state s

until Step = Nmax;

4 Primitive Merging

Even though we have introduced a parsimony term in the reward function, the
output of the Prim-Agent may still have some small or redundant primitives.
We design a simple algorithm to merge these primitives as follows.

We define a graph G for the output primitives. In this graph, each node
represents a primitive Pi. The merging of Pi(Vi, V

′
i ) and Pj(Vj , V

′
j ) will lead to

a new primitive Pij(min{Vi, Vj},max{V ′
i , V

′
j }). Two nodes Pi and Pj will be

connected by an edge if IoU(Pi

⋃
Pj , Pij) ≥ ε.

We compute the connected components for the graph G and then merge all
the primitives in the same connected components into a single primitive. The
merging process is performed for two iterations, while ε is set to 0.85 and 0.90
respectively in each iteration.

5 Edge Loop Assignment

Given M ′ primitives and N edge loops, we assign the edge loops onto the longest
axis of each primitive while the loops are uniformly distributed in that direction.
The number of loops E(Pk) assigned to a primitive Pk is determined by

E(Pk) = max{dN V (Pk)∑
i

V (Pi)
+ 0.5e, 2}, (1)

where V (Pi) is the volume for the primitive Pi and i ∈ {1, 2, ...,M ′}. It can be
seen that the number of loops assigned to a cuboid is proportional to its volume;
thus a larger cuboid will be assigned more loops. Each cuboid is assigned at
least two loops on the boundaries. When dealing with the last primitive PM ′ ,
we directly assign all the remaining unallocated loops on to PM ′ .


