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6 Supplementary

6.1 High-resolution image generation

While, for simplicity and efficiency, all the experiments are performed on 256×
256 pixel images, it is straightforward to increase the output resolution by adding
additional layers to the generator and the image discriminators. Figure 9 shows
the results of ConfigNet trained at a resolution of 512× 512 pixels.

6.2 Comparison to FaceID-GAN

We perform a qualitative comparison to FaceID-GAN [34] by fine-tuning Con-
figNet on a number of images from the FFHQ validation set and generating a
variety of poses and expressions to match a figure shown in the FaceID-GAN pa-
per. The results of this comparison are shown in Figure 10. While both methods
produce consistent poses and expression and preserve the identity well, Con-
figNet outputs images with more consistent illumination and background. This
is best exemplified in the third row of Figure 10b where the direction and inten-
sity of illumination stay constant despite change of head pose and expression.

6.3 Comparison to CycleGAN

We train CycleGAN [45] to convert images from the synthetic domain (Synth-
Face [3]) to the real domain (FFHQ [17]). We then generate synthetic image pairs
I+ and I−, where all the parameters except the modified attribute v are ran-
domly generated and identical between the two images. These images are then
passed through CycleGAN and an attribute predictor trained on CelebA [23] to
generate the controllability metrics: Cpred(I+), Cpred(I−) and MD (Section 4.1).
While CycleGAN and ConfigNet are not fully comparable, as the former does
not allow for modifying existing real face images, this simple procedure allows
us to compare the two methods in terms of the level of control over images in
the real domain.

Table 3 shows the controllability metric results for ConfigNet, CycleGAN and
the synthetic data generated with the procedure mentioned above. CycleGAN
obtains a slightly better dynamic range Cpred(I+)− Cpred(I−) than ConfigNet,
at a cost of a larger mean absolute difference of other attributes. While the dif-
ference in MD may look small in absolute terms, the relative increase compared
to ConfigNet is 45%. This leads us to the conclusion that while CycleGAN can
preserve the very large difference between the values of the modified attribute
v in I+ and I−, it does not preserve other, more subtle, attributes that should
have remained constant. Figure 11 strenghtens this conclusion by showing the
effects of hair colour change performed with CycleGAN and ConfigNet, where
the former clearly changes other face attributes as well.

The controllability metric results produced by unmodified synthetic data
show lowest MD, which is expected, but also lowest dynamic range. We believe
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Fig. 9: Results of ConfigNet trained at a resolution of 512×512 pixels. First row
shows input image, while the remaining rows show outputs of ConfigNet fine-
tuned on the input image. For expression modification we use the fine-grained
control procedure (Section 3.6) that allows to modify a subset of the expressions.
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(a)

(b)

Fig. 10: Qualitative comparison of a) FaceID-GAN [34] and b) ConfigNet. First
column shows the input image, while the remaining columns show varying pose
and expression. The identities in a) come from the CelebA [23] and LFW [13]
datasets, while the ones in b) come from the validation set of FFHQ [17]. Com-
pared to FaceID-GAN, ConfigNet produces results with more consistent illumi-
nation and background.

Fig. 11: Change of hair colour from blond to black using ConfigNet (top) and syn-
thetic data processed by CycleGAN (bottom). CycleGAN fails to preserve facial
attibutes like expression and skin colour that should remain constant between
the image pairs.
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Table 3: Average controllability metrics for ConfigNet, CycleGAN and synthetic
data. Ideally, Cpred(I+) = 1, Cpred(I−) = 0 and MD should be 0. The mean
difference Cpred(I+) − Cpred(I−) gives the dynamic range of a given attribute,
the higher it is the more controllable the attribute.

Method Cpred(I+) ↑ Cpred(I−) ↓ MD↓ Cpred(I+)− Cpred(I−) ↑
base method 0.54 0.04 0.055 0.50
CycleGAN 0.52 0.01 0.080 0.51
synthetic data 0.46 0.01 0.051 0.45

that this is caused by the domain gap between the synthetic dataset and the
CelebA dataset which was used to train the attribute predictor.

To compare ConfigNet to CycleGAN in terms of the photorealism of gener-
ated images, we generate an additional set of 10k synthetic images and pass them
through CycleGAN. We then compute the Frechet Inception Distance (FID) be-
tween the converted synthetic images and images from the FFHQ validation set.
The FID score for CycleGAN is 37.74, while the score for ConfigNet is 33.41 as
reported in Section 4.

6.4 Implementation details

For the perceptual loss we use layers conv 1 2, conv 2 2, conv 3 4, conv 4 4
of VGG-19. We regularize all the discriminators with the R1 gradient penalty
described in [25]. In the image discriminators, we also use the style discrimina-
tor loss Lstyle described in HoloGAN [27], while in the generator we add the
identity loss Lidentity described in the same paper. While HoloGAN re-uses the
discriminator features for identity loss, we use a separate network that has the
same architecture as the image discriminators. We do so, because neither of
our discriminators is trained to work with both real and synthetic data. We set
the loss weights as follows: eye loss weight λeye = 5, domain adverserial loss
weight λDA = 5, identity loss weight λidentity = 10, gradient penalty loss weight
λR1

= 10, perceptual loss weight in 1st stage λperc = 0.00005, perceptual loss
weight in 2nd stage λperc = 0.0005. The adveserial losses on the images and style
discriminator losses all have weight 1.

In the first training stage we sample z ∼ N (0, I) and rR ∼ U(−rlim, rlim),
where rR is the rotation sample for real data and rlim is a pre-determined, per
axis rotation limit. In all our experiments we set rlim to be identical to the
rotation limits used in synthetic data generation as described in the dataset
section. In the second stage the ER output corresponding to rR is constrained
to the range specified in rlim by using a tanh activation and multiplying the
output by rlim.

Table 4 shows the architecture of the generator network G. In each AdaIN
[14] input the latent vector z is processed by a 2-layer MLP. The volume rotation
layer is the same as the one used in HoloGAN [27]. Table 5 shows the architecture
of the image discriminators DR, DS . Following [27], most of the convolutional
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Table 4: Architecture of the generator network G
Layer name Kernel shape Activation Output shape Normalisation

learned const input - - 4× 4× 4× 512 -
upsampling - - 8× 8× 8× 512 -
conv3d 1 3× 3× 3 LReLU 8× 8× 8× 256 AdaIN
upsampling - - 16× 16× 16× 256 -
conv3d 2 3× 3× 3 LReLU 16× 16× 16× 128 AdaIN
volume rotation - - 16× 16× 16× 128 -
conv3d 3 3× 3× 3 LReLU 16× 16× 16× 64 -
conv3d 4 3× 3× 3 LReLU 16× 16× 16× 64 -
reshape - - 16× 16× (16 · 64) -
conv2d 1 1× 1 LReLU 16× 16× 512 -
conv2d 2 4× 4 LReLU 16× 16× 256 AdaIN
upsampling - - 32× 32× 256 -
conv2d 3 4× 4 LReLU 32× 32× 64 AdaIN
upsampling - - 64× 64× 64 -
conv2d 4 4× 4 LReLU 64× 64× 32 AdaIN
upsampling - - 128× 128× 32 -
conv2d 5 4× 4 LReLU 128× 128× 32 AdaIN
upsampling - - 256× 256× 32 -
conv2d 6 4× 4 tanh 256× 256× 3 -

Table 5: Architecture of the image discriminator networks DR, DS

Layer name Kernel shape, stride Activation Output shape Normalisation

conv2d 1 1× 1, 1 - 256× 256× 3 -
conv2d 2 3× 3, 2 LReLU 128× 128× 48 Instance Norm
conv2d 3 3× 3, 2 LReLU 64× 64× 96 Instance Norm
conv2d 4 3× 3, 2 LReLU 32× 32× 192 Instance Norm
conv2d 5 3× 3, 2 LReLU 16× 16× 384 Instance Norm
conv2d 6 3× 3, 2 LReLU 8× 8× 768 Instance Norm
fully connected 49152 - 1 -

layers of the discriminator use instance normalization [40]. The latent GAN
generator Glat and discriminator share the same 3-layer MLP architecture.

The networks are optimized using Adam [19] with a learning rate of 4e-4. We
perform the first stage of training for 50k iterations and then the second stage
for 100k iterations. The latent GAN is also trained for 100k iterations. Following
[16], in both the latent GAN and decoder G, we keep an exponential running
mean of the weights during training and use those smoothed weights to generate
all results.

6.5 Factorized latent space details

Table 6 shows the dimensionalities of all latent space factors zi and corresponding
synthetic data parameters θi. The dimensionalities of each zi were chosen based
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Table 6: Dimensionalities and descriptions of latent space factors
Factor name dim θi dim zi Description of θi
beard style 9 7 PCA coefficients
eyebrow style 44 7 PCA coefficients
expression 52 30 3D head model parameters ∈ [0, 1]
eye colour 6 3 one-hot encoding
eye rotation 3 2 rotation angles
hair colour 3 3 melanin, grayness, redness
hair style 18 8 PCA coefficients
head shape 53 30 3D head model parameters
illumination 50 20 PCA coefficients
lower eyelash style 3 2 one-hot encoding
texture 50 30 VAE latent space vector
upper eyelash style 3 2 one-hot encoding

on perceived complexity of the feature, for example we allocate more dimensions
to expression than to hair colour. We are able to exert control over all the pa-
rameters with the exception of eyelash styles, which correspond to features that
are too small at the image resolution we are working in. The expression parame-
ters consist of the 51 expression blendshapes described in [3] and one additional
dimension for the rotation of the jaw bone that leads to mouth opening.

6.6 Controllability metric details

The attribute predictor Cpred we use for the metrics is a MobilenetV2 [33] trained
to predict 38 of CelebA’s 40 attributes. The two attributes we do not predict are
Wearing Necklace and Wearing Necktie as the required features are not present
in our crops of CelebA images. For controllability metrics computed using the
attribute predictor we use ConfigNet to drive 8 attributes, while we use all 38
attributes to compute the MD value. The 8 attributes we drive are chosen to be
non-ambiguous and easy to verify by the user study participants.

For each evaluated face attribute v we set the corresponding zi = ESi(θi),
where θi is determined by manual inspection for both I− and I+. For example,
for v smile we set the expression parameters that correspond to mouth corners
going up for I+, while for I− we set parameters that correspond to mouth corners
going down. Note that in this experiment we do not use the fine-grained control
method described in Section 3.6, we instead set the entire θi with the chosen
value.

6.7 Entanglement in synthetic dataset

While SynthFace allows for disentangling many face attributes, we have found
that some of it’s properties lead to entanglement. In SynthFace each texture is
applied together with a corresponding displacement map, this leads to entan-
glement between texture and face shape. Examples of such entanglement are
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noticeable in texture row of Figure 14. The eyebrow style row of the same fig-
ure shows changes in eyebrow height, which are entangled with the eyebrow
raise expression. This is due to the varying vertical placement of eyebrows in
SynthFace.

Another issue is that in SynthFace a neutral face can have an open mouth.
Because of that, applying a neutral expression does not always lead to the mouth
closing, this issue is visible in top row of Figure 7. In those cases, the mouths can
still be closed by setting the value of the mouth opening expression to negative.
The same issue applies to other expressions to a smaller degree.

6.8 Additional figures

base image + smile + brow raise + looking right + eyes closed + mouth open

Fig. 12: Generation of combinations of facial expressions. The left column shows
the base image while each subsequent column adds another expression to the
image. With the exception of looking right each expression is added using the
fine-grained control method described in Section 3.6.
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input img bearded eyebrow 
raise

eyes closed long, 
straight hair

head 
frontal

head 
turned left

eyes 
looking left

illumination 
from right

Fig. 13: Modification of various attributes of faces from the 300-VW dataset [32]
using ConfigNet fine-tuned on the input image.

Algorithm 1: Fine grained control. The algorithm uses projected gra-
dient descent to estimate the synthetic data rendering parameter θ̃i
that maps to the supplied zi. θ̃i can then be modified to obtain a new
zi = ES(θ̃i). Since θ̃i is a parameter of a computer graphics pipeline, it is
semantically meaningful and its individual components can be modified
to achieve fine-grained control.

Input: latent space factor zi, number of iterations n, learning rate γ
Result: modified latent space factor zi
iter = 0;

θ̃i = [0, 0, . . . , 0];
while iter < n do

L = |zi − ESi(θ̃i)|2;

θ̃i = θ̃i − γOL;

clip θ̃i to the range of valid values of θi;
iter++;

end

apply desired modification to θ̃i;

zi = ESi
(θ̃i);
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Fig. 14: Random variations of the input factors of ConfigNet shown on a single
base image. In each row a single latent space factor zi = ES(θi) is modified,
with each row showing a different, randomly selected θi. Note the change of
appearance when modifying head shape, discussion in Section 4.4.
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Fig. 15: Results of sampling the latent space z = ER(IR), where IR is randomly
selected from FFHQ [17].

(a) Model trained with the eye gaze loss

(b) Model trained without the eye gaze loss

Fig. 16: Comparison of control over eye gaze direction for a model trained with
the eye gaze loss Leye and a model trained without it. Notice that a) achieves a
wider range of eye motion, which is most visible in the first and last column of
each row.
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Fig. 17: Interpolation of two face attribute at a time in images sampled from the
FFHQ [17] dataset. Note that the illumination direction stays constant as the
head rotates.

Latent GAN generator 𝑮𝒍𝒂𝒕 Decoder 𝑮

AdaIN

𝑧𝑅

𝐺 𝐺𝑙𝑎𝑡 𝑤𝑤

Legend: MLPvector CNN

Fig. 18: Outline of the method at inference time, when the latent GAN (described
in Section 3.5) is used to sample the latent space zr = Glat(w), where w ∼
N (0, I). Keep in mind that zr can still be modified using any of the methods
described in the paper to achieve control over the output image.


