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1 Section 4.2 Further Illustrations

In this supplemental section, we provide more illustration for Section 4.2 in
our main paper on Exemplar-based Latent Alignment. Fig. 1 (a) shows a dia-
gram showing our alignment process. Dome-captured data are reconstructed and
tracked to obtain 3D faces, while correspondences between headset-captured im-
ages and avatar are established via [1]. Dome-captured 3D faces are masked to
train modular VAEs, which produces the modular decoder Dmask

k and exemplar
codes Cmask

k . Finally, ĉpartk is obtained via exemplar-based matching as described
in Eq.(5) of our main paper.

The necessity of exemplar-based latent alignment roots from a fundamental
challenge in VR telepresence: the face is occluded by the VR headset. Because of
this challenge, it is physically infeasible to obtain unobstructed full face observa-
tions with the headset. This makes correspondence establishing approach [1] the
best available alternative to approximate animation ground-truth. However, sig-
nificant domain and content gap exist between dome-captured faces and headset-
captured faces, e.g., differences in lighting condition, facial skin pressure from
wearing the headset, appearance change between capture runs such as sweat and
facial hairs, etc. This means to obtain ĉpartk , pure image-based synthesis results
in large discrepancy in the latent space, as shown in Fig. 1(b). Furthermore,
when multiple capture runs exist for the same person, the discrepancy becomes
more severe as different runs have further domain and content differences.

The usage of exemplar-based latent alignment effectively locks ĉpartk to the

fixed bases defined by dome-captured codes Cpart
k . This essentially achieves a

trade-off between lowering the image-based synthesis residual error, and avoiding
final codes that are irregular or spurious.

2 Dataset Further Details

We provide further details for the headset captured sessions in Table 1 that are
used in our experiments. In total there are 14 sessions captured for 4 persons
(named as p1, p2, p3, p4) with three headsets in 6 different environment (named
as office, control, monitor, desk, usual, flash). Each check mark represents
one capture session and for the testing sessions the check marks are shaded. It
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Fig. 1. Further illustrations for Sec.4.2 Exemplar-based Latent Alignment. (a) shows
the steps of our described alignment process to obtain ĉpartk . (b) shows the latent space
comparing exemplars Cpart

k (black) and headset code obtained through pure image-
based synthesis without using exemplars (red), symbols represent different performed
expressions. Pure image-based synthesis often lead to irregular and spurious codes.

is worth noting that the capture environments for testing sessions never appear
in the training sessions. For person p1 and p2, the headsets used in testing are
also never used in training. These details further illustrate the robustness of our
method against different capture headsets and/or capture environments.

3 Ablation Study Further Details

In this supplemental section, we provide further details and discussions for the
ablation study shown in Table 2 of our main paper.

– blend For the ablation version we set the blending weights equal among
all modules across the face. Using blending weights improves the result sig-
nificantly by 0.66, showing the importance of blending modules adaptively
according to the dynamic expression.

– end2end For the ablation version we train the encoders and synthesizers
separately using intermediate supervision without end-to-end fine-tuning.
End-to-end training improves the result significantly by 0.57, showing the
importance of treating MCA model as a whole and enabling interaction
between its sub-networks.

– soft-ex. For the ablation version, we replace ĉpartk with one-hot categorical
vectors and train the encoders with cross-entropy loss. This has a significant
impact on performance by 0.39, showing the effectiveness of using part codes
obtained by our exemplar-based latent alignment.

– dimen. For the ablation version, we use a latent dimension of 16 instead of
256. This affects the performance by 0.07, as it is difficult for lower dimen-
sional codes to capture subtle expression differences.

– skip-mod. For the ablation version, we remove the cross-module connections
between the modular branches of image encoders. This affects the perfor-
mance by 0.08, showing the usefulness of exploiting the correlations between
modular images.
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office control monitor desk usual flash
person p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4

headset1 X X∗

headset2 X X X X X X X X X
headset3 X X

Table 1. Further details for different headset capture runs. Shaded cell denotes testing
capture runs. Starred cell denotes two capture runs with different facial hair density.

– tconv. For the ablation version, we replace the two temporal convolution
layers with two single-frame fully connected layers. This affects the perfor-
mance by 0.04, showing the usefulness of exploiting temporal correlations
between frames.

4 Video Demonstration

Please refer to the attached supplemental video for more qualitative examples
of the MCA model, as well as the two extensive applications Eye Amplification
and Flexible Animation as described in Section 5.3 of our main paper.

5 Limitations and Future Work

Besides failure cases of our model as shown in Fig. 7 in our main paper, we list a
list of limitations and potential improvements in order to facilitate future work.
We are particularly thankful to ECCV reviewers for their insightful suggestions
and discussions.

– In our experiments, we have empirically set the modules to correspond each
single camera. Other ways to separate the modules, such as having both eyes
to share the same module, are worth investigating.

– Our current model is person-specific, as is the standard approach for hyper-
realistic avatars. Our dataset is a step forward by including multiple rooms,
captures, and devices, but still limited in the number of subjects due to the
increased data collection cost per subject. The generalization of codec avatar
methods is an important direction for our future work.

– We focus on the talking and conversation videos in our evaluation because
they possess more variation across multiple capture runs. For the videos
where the subject performs fixed facial expressions, we found MCA does
not significantly outperform CA. This is due to these expressions have high
similarity between training and testing capture runs.

– In eye amplification, we simply applying a multiplier on the difference be-
tween current modular latent code and the base latent code corresponding
to the closed eye. This sometimes causes unwanted subtle gaze movement as
shown in 2:45 to 2:50 of our video. This shows the latent space is non-linear
to the actual physical motion, which suggests a potential solution to further
rectify the latent space so that it better reflects the dynamics of facial parts.
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– Our current v0 is set as a single frontal-facing view. It can be potentially
useful to use other view or multiple views, which provides further information
such as the side contours of the jaw.

– Our ground-truth expression is obtained via using more cameras on the
tracking headset along with iterative optimization based on photometric
errors. This is the best approximation to the true expression and we find this
provides sufficiently accurate results. Better ground-truth acquisition with
more convenient hardware setup can be further investigated in the future.
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