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We outline this supplementary material as follows:

1. We show additional visual comparisons with competing baseline methods.
2. We describe the network configuration of the proposed model. The source

code and the pre-trained model will be made available to fully reproduce our
results in the paper and the supplementary material.

3. We provide implementation details, including training and testing proce-
dures, as well as the implementation of baseline methods.

4. We present runtime analysis and the limitation of our method.

1 Additional visual results

We present additional qualitative results in the attached HTML webpage. Please
refer to the file main.html. Our visual results consist of three main components.

(1) Visual Comparison : We compare the novel view videos synthesized by
our method and other baseline methods on the ADE20K [8], ADE20K-outdoor,
NYU [3] datasets. We demonstrate these results in the Visual Comparison web-
page.

(2) Background inpainting : We explore alternative methods for handling the
dis-occluded regions when rendering the scene at novel views. According to the
disparity image, we render the novel view images by standard backward warp-
ing the synthesized color image. We then fill the missing pixels using different
existing in-painting methods. We experiment with the following three methods.
First, we apply simple diffusion-based inpainting for each frame independently.
Second, we apply a learning-based image inpainting model (GatedConv) [6] to
fill in the dis-occluded regions independently for each frame. Third, we use the
3D Ken Burns [4]. The 3D Ken Burns method inpaints only one single view and
may reveal additional dis-occluded regions in other views. The results are shown
in the Background inpainting webpage.

(3) Number of depth layers in MPI: We present the visual results of
using a different number of depth layers (32, 64, 128) in our Multi-plane Image
representation in the Number of depth layers webpage.

2 Network architecture

We provide the detailed network architectures of our two-stream image/disparity
generator in Figure 1. We adopt the design from stereo magnification [9] for the
MPI generator, which can be found in Table 1 in [9].

main.html
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Fig. 1: Network Architecture of image/disparity generator. We modify
the SPADE model [5] to a two-stream color/disparity generators. One stream
serves as the color generator, while the other one is the disparity generator.
The two-stream generators share the first three SPADE-style ResNet blocks.

3 Training

Image/disparity generator. Our training triple for image/disparity generator
consists of a semantic layout, a color image, and a disparity image. The semantic
layout is a 2D one-hot representation of 151 classes in ADE20K [8] dataset. We
generate the (pseudo) ground truth disparity image by the pretrained MiDaS [2]
predictor. Since the disparity maps predicted by MiDaS are relative prediction
with unknown scale and shift, we further use the prediction from DPSNet [1] to
transform the relative disparity map into absolute disparity. Specifically, for each
frame in RealEstate10K, we feed a stereo pair of images with the correspond-
ing camera intrinsic value, and the camera poses to the DPSNet. The DPSNet
predicts the absolute disparity map. For each frame, we calculate the scaling
and shifting transformation parameters between the MiDaS depth prediction
and the DPSNet depth prediction values, and transform the MiDaS prediction
to the absolute disparity image as our target disparity. Following DPSNet, the
disparity image has a range of 0 to 1, representing the disparity value from 1/2
to 32 equidistantly distributed.

We use a sequential training procedure for the image/disparity generator. The
training consists of two steps: (a) semantic image synthesis: we first train the
shared blocks and the color stream to generate the color image from the semantic
layout; (b) semantic disparity synthesis: we then fix the shared blocks and the
color stream, and only train the disparity stream, to generate the disparity image
based on the semantic layout. For (a) semantic image synthesis, we borrow the
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pretrained model of [5]. The network is trained by 20,000 layout/image tuples
in the ADE20K training set, optimized by Adam optimizer for 200 epochs with
a learning rate of 0.0001 and the batch size of 32. The training losses include a
VGG loss of weight 10, a GAN feature matching loss of weights 10 and a GAN
loss of weight 1. For (b) semantic disparity synthesis, we train the network using
150,000 layout/disparity tuples sampled from the RealEstate10K dataset. We
use Adam optimizer to train the network with a L1 loss, 150,000 iterations with
a learning rate of 0.0002 and the batch size of 1.

MPI predictor. The MPI predictor takes the source view image and the source
view disparity as input, and predicts the MPI, which is then projected to novel
views. Our training pair for MPI predictor consists of two images with camera
poses sampling from the videos of the RealEstate10K dataset [9]. We follow
the sampling method in [9]. We first randomly sample an interval value from 1
to 10, then we sample a 10-frame sequence with the interval value. Finally, we
randomly sample 2 frames from the sequence as our training pair and the source
view disparity is the same as Section 3. We use Adam optimizer to train the
network with a L1 loss for 150,000 iterations with a learning rate of 0.0002 and
the batch size of 1. Our MPI representation consists of 128 depth planes with
the depth equally distributed from 1m to 100m according to inverse depth. We
discretize the source view disparity to generate the alpha images based on the
same depth values.

4 Testing

NYU dataset. As we train our model using the semantic classes from the
ADE20K dataset, we are interested in validating how well the model generalizes
to different semantic layouts. We produce the testing results on the NYU dataset
by mapping the classes of NYU to the classes of ADE. Each class is mapped to
the class that has the same class name. For the “objects” class in NYU, we map
it to the “box” class in the ADE20K dataset.

RealEstate dataset. We test our model using the testing videos in RealEstate10K
[9] dataset. We use a semantic segmentation network PSPNet [7] pretrained on
the ADE20K [8] dataset to obtain the testing semantic layout from the images.
The results are shown in Figure 1 in the main paper.

5 Baseline Approaches

Direct (U-Net). The model takes the 151-class semantic layout as input, and
predicts a 72-layer MPI. The network is following the same U-Net in Zhou et al. [9].
We use Adam optimizer to train the network with a L1 loss, 300,000 iterations,
learning rate 0.0002, and batch size 1. The loss is applied between the projected
novel view x̂n and the ground truth novel view xn.

Direct (SPADE). The model takes the 151-class semantic layout as input, and
predicts a 72-layer MPI. The network follows the design of Park et al. [5]. We
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use Adam optimizer to train the network for 100,000 iterations, learning rate
0.0002, and batch size 1. We apply the loss between the projected novel view
x̂n and the ground truth novel view xn. Specifically, we apply the following loss
terms, a hinge GAN loss of weight 1, a GAN feature matching loss of weight
10, a VGG perceptual loss of weight 10, and a KL divergence loss of weight 0.5,
following [5]. The main differences between the Direct (SPADE) method and the
Direct (U-Net) method are the use of the more advanced generator and training
losses for synthesizing photorealistic images.

Cascade (MPI). First, we use the SPADE model [5] to generate the color
image using a 151-class semantic layout as input. We use the model architecture
from SPADE [5]. Second, we train an MPI generator that takes color images
as input, and predicts a 128-layer MPI. The network is following the same U-
Net in Zhou et al. [9]. We use Adam optimizer to train the network with a L1

loss, 100,000 iterations, learning rate 0.0002, and batch size 1. We apply the loss
between the projected novel view x̂n and the ground truth novel view xn.

Cascade (KB). We use the SPADE model [5] to generate the color image
using a 151-class semantic layout as input. We then apply the model provided
by Niklaus et al. [4].

Difference between the MPI. Note that the MPIs used in Direct (U-Net),
Direct (SPADE), Cascade (MPI) and our model have different settings. Direct
(U-Net) and Direct (SPADE) predicts xsFG, xsBG, {ws} and {αs}. Cascade (MPI)
predicts xsBG, {ws} and {αs}, directly using the xsFG generated by SPADE [5].
Our model only predicts xsBG and {ws}, directly using the xsFG and ds as {αs}
generated by our two-stream image/disparity generator.

Dis-occlusion handling baselines. We explore alternative methods for han-
dling the dis-occluded regions when rendering at novel views. We applied stan-

dard backward warping to project x̂sFG by d̂s to the novel view. We then apply
Diffusion or GatedConv for inpainting the missing pixels at novel views. For bet-
ter visual quality, we apply a median filter with window size 19 to the disparity

image d̂s. We also set the threshold on the occlusion mask so that a pixel is
visible if half of the adjacent pixels are visible in a window of 9.

6 Runtime analysis

In Table 1, we show the comparison of the training time, the inference time, and
the rendering time of our model, conducted on a desktop equipped with NVIDIA
GTX1080 and Xeon E5-2603 CPU cores.

7 Failure Cases

Our method sometimes may generate unnatural disparity maps, which result in
implausible novel view rendering. Figure 2 (top) shows the incorrect generated
disparity map and Figure 2 (middle) shows the corresponding generated color
image. Our method may also fail due to the incorrect MPI generation (e.g.,
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Table 1: Run-time analysis.

Training time of disparity generator (seconds / per iteration) 0.283
Training time of MPI generator (seconds / per iteration) 0.949
Inference time of image and disparity (seconds / per scene) 0.040
Inference time of MPI (seconds / per scene) 9.125
Rendering time of novel view (seconds / per view) 0.443

generate incorrect disoccluded contents). Figure 2 (bottm) shows that novel
view reveals clear visual artifacts.

Fig. 2: Failure Cases. (a) Our method generates unnatural disparity map (top,
middle). (b) Our method generates incorrect disoccluded contents (bottom).
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