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A Dataset Screenshots

We provide several screenshots of the dataset as in Fig. 1-3.
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Fig. 1. Dataset screenshots.
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Fig. 2. Dataset screenshots.
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Fig. 3. Dataset screenshots.
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B Implementation Details:
Conversion between Region and Normal

We give a detailed description of the normal-from-region and region-from-normal
conversion methodologies mentioned in the main paper. These two conversions
are implemented using a set of widely used and technically rooted morphology
transform algorithms. The below algorithms are not proposed in this paper. The
below descriptions are prepared for readers who are not familiar with the trans-
lation between region maps and normal maps. The correctness, effectiveness, and
applicability of the below algorithms are already discussed in related previous
literatures. The below algorithms are also widely used in instance segmentation
fields.

Illustration Region annotation ( X ) Boundary map ( B ) Skeleton map ( S )

Random field ( Drand ) Displacement map ( D ) Normal map ( N ) Watershed marker ( W )

Fig. 4. Visualization of involved maps in the region-normal transform algorithms.
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B.1 Normal-from-region transform

As shown in Fig. 4, given an input region annotation X, the normal-from-region
transform is aimed at produce a transformed map Y , which is a concatenation
of a normal map N and a watershed marker W . The transform includes the
following steps:

Step 1: Compute the boundary of the region annotation X to get the boundary
map B.

Step 2: Compute the Zhang-Sun-Skeleton [1] of the region annotation X to get
the skeleton map S.

Step 3: Initialize a random field Drand. If one pixel belongs to boundary in B,
that pixel will be marked as zero. If one pixel belongs to skeleton in S, that pixel
will be marked as one. The remaining pixels are be marked with random value
sampled from random uniform distribution between zero and one.

Step 4: Optimize the random field Drand to get the displacement map D. We
uses a routine Gaussian energy

Edisplacement =
∑
p

||(Drand)p − (g(Drand))p||1

+
∑

i∈{i|Bi=1}

||(Drand)i − 0||1

+
∑

j∈{j|Sj=1}

||(Drand)j − 1||1 (1)

where p, i, and j are possible pixel positions, g(·) is a Gaussian (sigma is 1.0)
filter, and || · ||1 is the L1 Euclidean distance. This energy can be flexibly solved
by gradient descent.

Step 5: Compute the normal map N using the displacement map D. We use a
standard normal-from-height [2] algorithm to achieve the normal.

Step 6: Compute the watershed marker W by binarizing the displacement map
D. We use the threshold 0.618.

Step 7: Concatenate the normal map N and the watershed marker W into the
final output Y .

B.2 Region-from-normal transform

Given the concatenated Y , we split it into the normal map N and the watershed
marker W . After that, we run the watershed [3] with the marker W filling the
map N . The results are the reconstructed regions. Note that when the marker W
is predicted from neural networks, e.g ., the Coarse CNN, we may use morphology
methods to remove some possible noise. In particular, we enforce all white regions
in W to be bigger than 64 connected pixels.
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Illustration
Normal & Marker Regions

watershed

concat.

Fig. 5. Coarse CNN. Neural network architectures for generating coarse region anno-
tations.

Input
image

Coarse CNN
predicted
normal map

Coarse CNN
predicted
marker map

Watershed
coarse
region map

Watershed
coarse
region map
visualized
in color

at 5th loop at 10th loop at 15th loop at 20th loop at 25th loop at 30th loop

Fig. 6. More examples of the predictions from Coarse CNN and the generated coarse
region maps during the annotating loops as mentioned in main paper.
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C Implementation Details: Coarse CNN

We illustrate the coarse annotation generator architectures as shown in Fig. 5.
All convolution layers use 3× 3 filters. Down-sampling is achieved using average
pooling and Up-sampling is achieved using bilinear interpolation. These neural
networks are optimized using Adam (lr = 1e−3 and other parameters are default
as in [4]). The inputs of the model is RGB images, and the outputs are the
four channels of the concatenated normal map (three channels) and watershed
marker (one channel). This model is trained with L2 loss (or called the mean
squared error) and adversarial loss (using Pix2Pix’s patch discriminator [5]).
The predicted marker map is binarized with a threshold at 0.5. The outputs of
these neural networks can be converted to regions using watershed as mentioned
before.

This model can be trained on any {image, region map} pairs by translate
these pairs into {original image, concatenated normal map and watershed marker
map} pairs, and then the estimation can also be translated back to regions using
the aforementioned region-from-normal method.

One notice is that this approach “translate the regions to watershed normals”
is a routinely used approach in region processing and instance segmentation. The
effectiveness, correctness, and performance of this approach have already be
extensively discussed in many “normal + watershed” or “distance transform +
watershed” instance segmentation literatures, e.g ., “Deep Watershed Transform
for Instance Segmentation” [6].

More Estimated Coarse Region Maps We present more estimated region maps
in Fig. 6. We include the visualization of the estimated normal map, estimated
watershed marker, and generated coarse regions. These results are from different
loops in our human-in-the-loop workflow as mention in main paper.

D Implementation Details: Cartoon Tracking

We detail the implementation of the Global Optimal Toon Tracking (GOTT)
[7], as mentioned in the main paper. We do not make modifications to GOTT’s
net-flow correspondence matching algorithms. We only change its backend re-
gion segmentation method. Originally, GOTT uses a edge-detection-based region
segmentation method. We replace that segmentation method with our leaning-
based region segmentation backend.

Using the above region-from-normal approach, we translate our dataset into
{original image, concatenated normal map and watershed marker map} pairs.
These pairs can be used to train image-to-image translation methods. In par-
ticular, we directly train a Pix2PixHD [8] for the GOTT application. After the
training, the estimated normal maps and watershed marker maps can be trans-
lated back to regions using the above normal-from-region approach.

One important notice is that, in the GOTT application, we use a special data
augmentation method to augment the high-frequency domain of the images. This
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is because the GOTT places high demands on the region closure and structure
but cartoon images often have broken regions (as we have discussed in the main
paper). Although our artists have already provided manually closed regions,
we find that Pix2PixHD (and some other possible architectures) is not always
able to learn those closure. In many cases, the CNN tends to over-fit to the high-
frequency patterns in the input images, and whatever we train it, a broken region
is always broken as long as the input illustration region is broken. We have tried
many strategies, and fortunately find that we can use a high-frequency domain
data augmentation method to get rid of this limitation. The implementation
is very easy. We only need to apply a Bilateral Filter [9] to the training input
image.

Also, we have a discovery that we should not use fixed parameters in the
Bilateral Filter. This is because CNNs are very “powerful”, and they can even
solve the blurring kernels and thus invalid this data augmentation, causing over-
fitting problems where broken regions are still broken. Therefore, when training
the Pix2PixHD, we use randomized parameters in the Bilateral Filter to augment
the input images. In particular, we apply a random number in U(20, 1000) to
the Bilateral spacial sigma, and U(20, 1000) to the Bilateral color sigma. Some
results are visualized in Fig. 7 (the low&high-frequency augmentation). In test
time, we use a simple Gaussian filter (sigma is 7.0) to pre-process the input
image in order to prevent the CNN from being “stuck” in the high-frequency
constitutes (those high-frequency broken lines and regions).

After the training, we directly translate the Pix2PixHD predicted normal
and marker into regions. Besides, we find that the GOTT’s shape metrics can
work a bit better if the region boundary is less “noisy” or a bit more smoother.
In order to make the estimated region boundary a bit more smoother (regions
produced by watershed is not very smooth in most cases), we use the method [10]
to simplify the topology of our region boundary. Finally, our region is used as
the initial segmentation in GOTT to replace its original segmentation backend.

It is notable that this detailed implementation is only a possible approach to
make use of the dataset. We are not comparing this implementation “against” the
original GOTT and any other methods. More importantly, this implementation is
only a strong evidence to verify that our dataset can be used in this task. And,
this implementation can achieve some beneficial results. It facilitates further
researches to develop more reliable frameworks, conduct more adequate ablative
study, and organize more rooted comparisons, so as to make better use of our
presented dataset.

E Implementation Details: Cartoon Intrinsic Images

We detail our implementation of the L1 smoothing [11]. This implementation
makes use of the dataset to remove illumination inferences from the input cartoon
image. Note that although our dataset enables a reliable illumination separation,
in particular, several training and implementations strategies are still needed to
achieve a practically usable framework.
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Luminance-chroma augmentationLow&high-frequency augmentation

Fig. 7. Data augmentation methods that are used in mentioned applications.

The first strategy is to use an adversarial augmented generator. In particular,
we translate our dataset into {original image, concatenated normal map and
watershed marker map} pairs and train a Pix2PixHD [8] generator. In our study,
using adversarial generator yields a bit better results. After the training, the
estimated normal maps and watershed marker maps can be translated back to
regions using the above normal-from-region approach.

The second strategy is to use the luminance-chroma augmentation. This is
because eliminating the shadow boundary is very difficult for CNNs. In most
cases, the trained CNN will always preserve all shadow boundaries. Even though
our dataset have provided the data to eliminate the shadow edge, the CNN is
not always able to learn these data. Sometimes the CNN can over-fit to the high-
frequency cues of the input image, and the shadow regions tend to be preserved
in the final region map. In order to avoid such over-fitting, we use a special
data augmentation called luminance-chroma augmentation. This augmentation
is very easy to implement. We only need to convert the RGB image into Lab
image, and then randomly reduce the contrast of the L channel. In particular, we
reduce the L contrast by random scalar U(0.1, 0.9), and then translate the Lab
image back to RGB image. In this way, the shadow edge becomes less salient
in the CNN input. Some results are visualized in Fig. 7 (the Luminance-chroma
augmentation). In test time, we use a fixed scalar 0.5 to reduce the L contrast.

The third strategy is to use a relatively higher piece-wise weight in L1 smooth-
ing. Because our segmentation is more adequate than L1 smoothing original
backend (the original super-pixel-based segmentation), we can set a relatively
larger region-wise weight to the overall smoothing. In particular, we use a lambda
of 5.0 (the original lambda is 0.5). This can result in more adequate region-wise
smoothing. And, once the shadow edge is eliminated from the region boundary,
those shadow can be then adequately removed.
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The forth strategy is to enable the multiple channel intrinsic decomposition.
The original L1 smoothing formulate the intrinsic problem as the multiplication
between a multiple-channel albedo and a single-channel shading. This is not
acceptable in artist image. Artists is not always drawing shadow with single
color, and it is a must to enable the multiple-channel shading map. It can be
implemented easily. We can flexibly compute the shading map using all channels
of the L1 smoothed output.

It is notable that this detailed implementation is only a possible approach to
make use of the dataset. We are not comparing this implementation “against”
the original L1 smoothing and any other methods. More importantly, this im-
plementation is only a strong evidence to verify that our dataset can be used in
the cartoon intrinsic decomposition task. And, this implementation can achieve
some practically usable results. It facilitates further researches to develop more
reliable frameworks, conduct more adequate ablative study, and organize more
rooted comparisons, so as to make better use of our presented dataset.

F Implementation Details: Flat Sketch Colorization and
Color Cleaning-up

We detail our implementation for the flat sketch colorization strategy. This ap-
plication is very easy to implement. Given the input sketch, we segment it into
regions. Then, we sample the median color in the sketch colorization results for
each regions, and then output the flat color map.

The region generator is a Pix2PixHD [8] trained on our region dataset. We
translate our dataset into {original image, concatenated normal map and wa-
tershed marker map} pairs and train the Pix2PixHD. After the training, the
estimated normal maps and watershed marker maps can be translated back to
regions using the above normal-from-region approach.

For data augmentation, we use the aforementioned “low&high-frequency aug-
mentation” (Fig. 7). This is to encourage the neural networks to learn to recon-
struct broken or ambiguous regions, and avoid the neural networks to over-fit
the high-frequency edges in the input image. Another strategy is that we use the
method [10] to improve the topology of the region boundary. This will make the
region boundary looks a bit more smoother. Nevertheless, we are aware of that
the post-processing can cause the some possible “edge inconsistency” artifacts
(see the paper of LazyBrush for details [12]). In these cases, we can remove this
post processing for applicability.

We also allow users to merge some regions in the region map. As mentioned
in the main paper, we allow users to draw some “dotted” lines to merge the
regions in the neural network estimation. In this way, the region quality can be
improved in some practical use cases.

It is notable that this detailed implementation is only a possible approach
to achieve flat sketch colorization. We are not comparing this implementation
“against” the LazyBrush, PaintsChainer, Style2Paints, GIMP, and any other
methods. More importantly, this implementation is only a strong evidence to
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verify that our dataset can be used in the flat sketch colorization task. And,
this implementation can achieve some beneficial and usable results. It facilitates
further researches to develop more reliable frameworks, conduct more adequate
ablative study, and organize more rooted comparisons, so as to make better use
of our presented dataset.
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