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1 Application in Interactive Scenarios

By default, the EG-Net and Gaze2Mask-Net are applied to the first frame to de-
termine the target object and obtain the initial mask and hotspot for subsequent
tracking. In such setting, our model can perform inference online in real-time.
In addition to the automatic initialization, our method can also be extended
to user-interactive scenarios. Specifically, users can provide eye gaze sensors or
simple clicks on the object to indicate points of interest. Then the user input re-
places the gaze map from EG-Net and serves as a guidance to produce the initial
object mask and hotspot. After the object initialization, our weighted correlation
siamese network will be used to generate the mask and hotspot track-lets.

We show an example case with the interactive initialization in a multi-object
video, as shown in Fig. 1. The objects to be tracked are determined by the target
object initialization module, and often all the salient objects will be included in
the mask. As can be seen in Fig. 1 (b), for the video with multiple objects, our
initialization module automatically identifies both objects as the target, and the
hotspot tracking can consistently capture the focal regions of both objects. To
implement the user interaction, we first apply simple click inside the specific
object (i.e., human head) to define the initial hotspot and obtain the initial
mask using Gaze2Mask-Net. Then the tracking module runs one inference pass
for each initialized object to obtain its mask and hotspot track-lets. The results
in Fig. 1 (c)(d) show that our weighted correlation siamese network is able to
produce consistent hotspot tracking on the tracked object.

2 Object Hotspot Tracking Application

As introducted in the main paper, we propose a new task, object hotspot track-
ing, which aims to generate the intra-object salient spots estimation along the
video sequence. Compared with video eye gaze tracking, our hotspot tracking
could provide cleaner and more stable and temporally consistent results, which
provide strong benefits to video editing tasks, such as video cropping, zooming.
More descriptions about the comparisons can be found in the Sec.1 of the main
paper. To implement our hotspot tracking on the aforementioned applications,
we build a user interface, which allows automatic and user-specific video zoom-
ing and retargeting. In the automatic setting, given an input video, our system
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can automatically determine the primary objects and generate the corresponding
hotspot and mask track-lets. Our system also allows users to define the obejcts
by drawing bounding boxes or simple click. Implementations of the cropping al-
gorithm are described in [1], which takes the object trajectories from mask and
hotspot as reference, to produce consistent, visually pleasing cropping windows
across time. The sample demo applications are shown in the supplementary
videos (UI_zooming.mp4, Retargeting.mp4 and AUTO_zooming.mp4).
The videos, Ul_zooming.mp4 and AUTO _zooming.mp4, show the applica-
tions of user interactive zooming and automatic zooming, respectively. The video
Retargeting.mp4 shows the video retargeting process.

3 Architecture of Eye Gaze Network and Gaze to Mask
Network

In the paper, we propose a Target Object Initialization module (TOTI) to deter-
mine the target object to be segmented in the input video. The TOI contains
two sub-networks, EG-Net and Gaze2Mask-Net, used for predicting a loca-
tion estimation and the mask of the target object. We show the architecture
of EG-Net and Gaze2Mask-Net in Fig. 2 and Fig. 3, respectively. The detailed
illustration can be found in the Sec.3.1 of the main paper.

4 Hotspot Annotation

To quantitatively verify the performance of our hotspot tracking model, we an-
notate the hotspot ground truth on the DAVIS-2016 dataset [5] and make a
comparison with video eye gaze models [7,3] (see Tab. 5 in the main paper).
The hotspot is sparsely annotated on every 10 frame of the video sequences
in the DAVIS-2016 validation set. Five users are asked to first determine the
salient part inside the object and then make consistent mouse clicks on that
region across time. We illustrate several examples of our hotspot annotations in
Fig. 4.

5 More Qualitative Results

We provide additional results on several sequences from the DAVIS-2016 [5],
SegTrackv2 [4] and Youtube-Objects [2] in a supplementary video (1975.mp4).
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(b) (c) (d)

Fig. 1: The intermediate hotspot and mask tracking results under various definitions
of target object. (a) Input frame. (b) The target object is automatically defined as
the union of two objects by target object initialization module. (c¢) and (d) The target
object is defined on the separate object by user click. Zoom in to see the details.
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Fig. 2: Overall framework of Eye Gaze Network (EG-Net). Give an input for initial-
ization, the EG-Net first exploits the EfficientNet [6] to extract the corresponding
multi-level features. The three residual decoder blocks (shown in the orange dotted
box) are stacked to generate the eye gaze map.
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Fig. 3: Overall framework of Gaze to Mask Network (Gaze2Mask-Net). The
Gaze2Mask-Net takes the input as the initial frame and the corresponding eye gaze
map generated by EG-Net. The EfficientNet [6] is used to extract multi-level features.
We stack five residual decoder blocks (shown in the orange dotted box) to produce the
object mask in a coarse to fine manner.
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Fig. 4: Visual examples of hotspot annotations on DAVIS-2016 dataset.
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