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Summary. In this supplement, we provide more detailed analysis and experi-
mental evidence that has not been provided in the main paper due to the limited
space. This includes 1) Detailed explanation for our Foreground Focal Loss, 2)
More discussion for the experimental settings on HICO-DET dataset, 3) More
precise analysis of time vs. performance including the end-to-end time, and 4)
More qualitative analysis for UnionDet.

1 Foreground Focal Loss

As introduced in the main paper, one major issue of union-level detection is that
union regions often overlap over each other. This causes noisy training since a
single anchor is assigned with one ground-truth label at most during training
(see Fig.1). Different pairs with exactly identical union regions can be dealt with
ease by simply merging the overlapping ground-truth labels. However, it is very
difficult to merge all the ground-truth labels based on the portion they overlap
with each other. To this end, we propose foreground focal loss to address this
issue.

Reminding Target Object Classification Loss. Since it is not suitable to
use only the standard IoU for Union-level Detector, we propose the novel union
anchor labeling function U;; € {0,1} which indicates whether 4;, ground-truth
label g; and j, anchor a; are associated or not. As briefly mentioned in the main
paper, only one ground truth with the largest IoU is associated with anchor a;
when multiple ground truths are matched. We define ¢* as the index of the
ground-truth index associated with anchor box a;.

i* = argmax(U;; -ToU(ay, §i°%)). (1)
Note that ¢* is valid only in the positive anchor set Ay = {a;|>_, U;; > 0}
because all of the U;; are zero in negative anchor set A_ = {a;|>_, U;; = 0}.
Based on Eq.1, the detailed union anchor labeling function U;; is given as
1 if i==2*
Ui = {0 otherwise. 2)

+

* equal contribution, 'corresponding author
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For using ground-truth index ¢*, the union loss function Lu(é) with target object
classification loss (Eq.3 in the main paper) is rewritten as
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Foreground Focal Loss in Union Branch As mentioned in our main paper,
the union action classification loss is given as

act/n\ __ vact vact
‘Ci*j(e) *FL(aj y Gix 70)a (4)

where FL denotes focal loss [10]. Predicted union action vector in j;, anchor
dgd € R7 is trained with the i}, ground-truth union action vector g&* € R”. In
Fig. 1, a single anchor box is associated with only one ground-truth box g;« and
action vector per each anchor is trained with the corresponding ground-truth
vector g&¢t. Under ordinary focal loss, positive action labels for the ground-
truth g (i" # ¢*) are mistakenly treated as negative even though the anchor
box sufficiently contains visual features of g;;. To solve this issue, we propose
Foreground Focal Loss that ignores negative action labels for anchors in A, .
The final loss function in Union Branch is given as
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2 DMore Analysis of our HICO-DET results.

The main issue in HICO-DET evaluation is the large amount of objects that
are left unlabeled. As the evaluation metric (AP) is directly affected by the
performance of the base object detector, fair evaluation is hindered when com-
paring architectures that leverage different object detectors (Faster-RCNN vs
RetinaNet). Even though performances in the standard COCO evaluation of the
two networks are comparable (37.9 vs 37.4), our one-stage dense object detec-
tor (RetinaNet) suffers from a more severe performance drop in HOI detection
when used without fine-tuning. To overcome this issue, we followed the experi-
mental setting of previous works [1] in our main paper and fine-tuned the base
object detector to reduce the impact of these false-negative detection. In this
section of our supplement, we show the evaluation results when eliminating this
fine-tuning stage in our architecture, and provide deeper analysis related to the
experimental setting in HICO-DET dataset.

Results without Fine-tuning Detectors. Fig.2 shows the false-positive pre-
dictions caused by our object detector (red boxes are the ground-truth label, blue
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Fig. 1. Examples of overlapping union regions causing noisy training. The dotted blue
box represents the anchor, the blue box represents the ground-truth box that has the
highest IoU with the anchor, and the red box represents the overlapping ground-truth
box that has high IoU with the corresponding anchor but not been mapped as a label.
Despite the two anchors (top vs bottom) have nearly identical visual appearances,
ordinary focal loss results in contradictory learning objectives (e.g. for the first row,
‘lay’ is trained as a negative once and as a positive once for the two anchors with almost
identical visual features).

i

i v")‘t___L

Fig. 2. Detection results on HICO-DET dataset. Red is the ground-truth. Blue is our
prediction. As you can see, the loose ground-truth annotation results in many false-
positive detections in this dataset.



4 B. Kim et al.

boxes are our prediction). It can be seen that the majority of the false-positives
are caused because somewhat obvious objects are not properly labeled. Since the
final HOI detection performance is measured with AP, high confidence detection
on these regions will eventually harm the final HOI detection performance.

Ground-Truth Objects RetinaNet (Ours) Faster-RCNN (Baseline)

Fig. 3. Detection results on HICO-DET dataset. Red, Blue, GGreen each denote de-
tection with confidence over 0.8, 0.5 and 0.2, respectively. As you can see, our base
detector (RetinaNet) suffers from a notable amount of false-positive detection com-
pared to Faster-RCNN.

Fig.3 shows that our base object detector (RetinaNet) ends up with much
more false-positive predictions compared to the base detector in previous HOI
detection models (Faster-RCNN). Therefore when the fine-tuning step is elimi-
nated, our model suffers from a performance drop caused by the false-positive
predictions of RetinaNet (see Table.1). The performance drops across both “De-
fault” and “Known Object” setting. Note that we still achieve state-of-the-art
performance in the “Known Object” setting despite this performance gap in the
object detector.

Performance Drop in Default Evaluation. In the “Default” evaluation
setting in HICO-DET (see Table.1), the performance is dependent on both the
object detection results and the accuracy of interaction prediction. Note that in
the default setting of HICO-DET, the more prevalent source of error comes from
recognizing the objects [2]. In Table.1, it can be seen that our one-stage dense
object detector suffers from a large set of false-positive sets caused by the dense
prediction of RetinaNet and incomplete labeling.
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Table 1. Performance and additional inference time comparison in HICO-DET. Models
with { are the ones that have fine-tuned the base object detector.

Default Known Object
Method Ext src  Full Rare Non Rare  Full Rare Non Rare t(ms)

Models with external features
Functional Gen. [1]} [11]
Functional Gen. [1] [11]

21.96 16.43 23.62 - - -
16.96 11.73 18.52 - - -

Models with original comparison

VSRL [7] X 9.09  7.02 9.71 - - - -
HO-RCNN [8] X 7.81  5.37 8.54 10.41  8.94 10.85 -
InteractNet [6] X 9.94  7.16 10.77 - - - 55
GPNN [12]f X 13.11  9.41 14.23 - - - 40
iCAN [4] X 14.84 1045  16.15  16.26 11.33  17.73 75
TIN (RCp) [9] X 13.75 10.12 1545 1534 10.98  17.02 70
DCA [14] X 16.25 11.16  17.75  17.73 1278  19.21 130
Ourst X 17.58 11.72 19.33  19.76 14.68 21.27  9.06
Ours X 14.25 10.23  15.46  18.30 13.57 19.72  9.06

State-of-the-art Performance in Known-Object Evaluation. In the “Known
Object” setting, objects are less of a source of error. Therefore in this setting,
tuning for verbs (V), not objects, gives the best result [2]. As our main chal-
lenge is to improve interaction detection and speed-up interaction prediction,
improvement in the “Known Object” setting is considered significant. Table 2 in
the main paper shows that our model gives the best performance in this setting:
showing that our UnionDet is well-tuned to capture interaction.

3 Time vs Performance Analysis

End-to-End Inference Time. We measured inference time on a single Nvidia
GTX1080Ti GPU. Our model achieved the fastest end-to-end inference time
(77.6 ms). Since most multi-stage pipelines use different heavy networks at
different stages, it causes additional latency to switch models and save/load
intermediate results. Considering a real-world application on a single GPU, the
gain from our approach is much bigger than the gap in end-to-end inference time
analysis shown in Table 2.

iCAN, RCp, and DCA requires object detection results from Faster-RCNN
in Detectron [5] for its input. On our machine, this takes 83ms inference time
excluding the i/o time for intermediate results. iCAN takes 173 ms and 158
ms in total that include 83 ms for object detection phase using Faster-RCNN,
and feature fusion 90 ms (early) and 75 ms (late). RCp [9] was implemented
based on [4] and takes 153 ms that includes the same object detection inference
time for Faster-RCNN. GPNN takes 138 ms which includes only the average
graph neural network inference time 40ms and object detection time 98 ms using
Deformable Convolution Network. For the models that have no official code, we
compared them with the inference time reported in the literature. InteractNet
takes 135ms [6] and Deep Contextual Attention (DCA) [14] takes 213
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Table 2. Comparison of performance and end-to-end inference time on V-COCO test
set. -#1, -#2 each refers to the performance with Scenario#1 and Scenario#2.

Method | Feature backbone | External Resources | AP, | t(ms)
Models with original comparison
VSRL [7] ResNet50-FPN X 318 -
InteractNet [6] ResNet50-FPN X 40.042 135
BAR-CNN [8] ResNet50-FPN X 436 -
GPNN [12] ResNet152 X 44.0 138
iCAN [4] ResNet50 X 4474, | 158
TIN (RCp) [9)] ResNet50 x 4324, | 153
DCA [14] ResNet50 X 47.3 213
. 4754
UnionDet (Ours) | ResNet50-FPN X 77.6
56.2.4:

ms which is the sum of 83 ms for Faster-RCNN, and 130 ms for interaction
prediction.

However, the end-to-end inference time is insufficient for precise compari-
son since the inference time heavily depends on the inference time of the back-
bone object detector (e.g., Faster-RCNN [13], Deformable Convolutional Net-
work [3]) which can vary depending on benchmark settings (e.g., the library,
CUDA, CUDNN version or hyperparameters). Therefore, our main comparison
on time vs performance will be covered by the additional time for interaction
prediction, excluding the time for object detection.

Additional Inference Time for Interaction. Our approach adds the mini-
mal inference time on top of a standard object detector thanks to the parallel
architecture directly detecting union bounding boxes within a one-stage detec-
tor. This enables our model to achieve minimal time for the HOI prediction
phase. In Table 1, Table 2 of our main paper and Fig. 4 above, we compared
the additional inference time of the HOI interaction prediction model excluding
the time of the object detection phase. For InteractNet [6] that did not provide
component-wise time analysis for interaction prediction in literature and has
no implementation code released, we measured the additional inference time by
subtracting the benchmark inference time for backbone RPN (80 ms [5]) from
the end-to-end inference time (135 ms).

The additional interaction inference time of our model is calculated by sub-
tracting the inference time of RetinaNet [10] from the total inference time of
UnionDet. We present the time measure with a 640 x 480 scale image as baselines
have done [6,4,9, 14], and present the mean and standard deviation for 5 runs.
The final additional time for interaction prediction of ours has been calculated
as the difference between 77.6240.178 ms of our entire pipeline and 68.56+£0.075
ms of our base detector without any interaction prediction, 9.06+0.193 ms.
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Fig. 4. Time vs Performance analysis based on additional interaction inference time.

4 More Qualitative Analysis for UnionDet

Qualitative Analysis for Target Object Classification. Fig. 5 presents
more qualitative analysis to show the difference between the models that have
been trained with/without our Target Object Classification loss. The red boxes
show the union region prediction that matches the ground-truth interaction over
a score threshold of 0.3. The first row shows visual examples of union-level
detection with vanilla union detection branch, without both Anchor Labeling
and Target Object Classification loss. The second row shows results of union-level
detector that has been implemented with Anchor Labeling but without Target
Object Classification loss. As our Anchor Labeling ensures ground-truth labels
to cover a sufficient portion of the target object, the large bias towards humans
is somewhat alleviated. However, it can be observed that the prediction is still
suffering from the bias towards human regions: thus failing to cover the target
object. The bottom row in Fig. 5 shows the results after applying our Target
Object Classification Loss. We can see that our Target Object Classification loss
encourages the union-level detector to capture the union region that correctly
encloses the target object.

Target Object Classification loss improving HOI. Since the target object
classification loss guides the union region to have a specified target, it resolves
ambiguous union-level predictions. Detailed examples are shown in Fig. 6. In
both subfigures, the union-level detector trained without Target Object Clas-
sification loss fails to capture the region that tightly encloses both the human
and target object. Even if the IoU is substantial, the Union Matching function
14, appears to be relatively low if either the target object or human is not prop-
erly enclosed within the predicted area, which leads to a low p,. Our Target
Object Classification loss enables the final union-level detector of our UnionDet
to capture tight regions that have enhanced matching scores with the correct
(human, object) pair with interaction. This leads to an improvement in our final
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inference score for the appropriate (human, object) pair, and thus enables more
accurate HOI detection.

Target Object Classification loss Suppressing False-Positives. Another
delightful property of our Target Object Classification loss is that it eventually
suppresses false-positive union-level detections that don’t properly include the
(human, object) pair with interaction (boxes in in Fig. 9). In the first
and third columns in Fig. 9, the vanilla detector captures region that does not
correctly contain the human region. In the second and fourth columns of Fig. 9,
the Target Object Classification loss guides the union-level detector that captures
excessive areas to focus on the actual union area with the target object.

More Union-level Detection in Complex Scenes. In Fig. 8 we present a
few more qualitative analysis on union-level detection results in complex scenes
that includes multiple unions that has the same target object or multiple unions
overlapping over each other. In the left and right subfigure of Fig. 8, more than
one person is interacting with the same object (soccer ball, frisbee). Our union-
level detector successfully captures the precise union region of the interaction
between each (human,object) pair. In the middle subfigure of Fig. 8, you can
see that our union-level detector successfully captured both union regions of
(human — look — frisbee) and (human — look — human,).

More Results in UnionDet Capturing Remote Target Objects. Here,
we present more qualitative analysis on union-level detection results that have
remote target objects. As mentioned in our main paper, union-level detection
gets more difficult as the target object of the interaction becomes small and re-
mote. In Figure 9, more examples of our UnionDet successfully capturing remote
and small target objects with the correct interaction is presented.
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TRAINED WITHOUT ANCHOR LABELING & TARGET OBJECT CLASSIFCATION LOSS

Fig. 5. Target Object Classification loss successfully guiding union-level detectors to
enclose target objects. Predicted union-level region with the correct interaction type
in red, and target object in

person(1) — look - frisbee person — hit instr — tennis racket
GROUND TRUTH ACTION GROUND TRUTH ACTION . R
person(2) — look — person(1) person — hit obj — sports ball
TRAINED WITHOUT TRAINED WITH TRAINED WITHOUT TRAINED WITH

person(1) - look - frisbee person(1) - look — frisbee person — hit instr — tennis racket person — hit instr — tennis racket

Uy = 0.52 U, =0.97 U, =0.44 Uy = 0.95
person(2) - look - person(1)  person(2) - look — person(1) person — hit obj — sports ball person — hit obj — sports ball
= 027 fy = 0.74 1 = 0.41 1, = 0.91

Fig. 6. Target Object Classification loss successfully resolving complicated union re-
gions with overlap. The left and right image for each section is the union-level detection
by UnionDet trained without/with Target Object Classification loss, respectively. As
the Target Object Classification resolves ambiguous union regions, the Union Matching
Score . gets improved for the correct (human,object) pair of interaction. Predicted
union-level region with the correct interaction type in red, and target object in
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Fig. 7. Union-level detection successfully capturing small and remote target objects.
Predicted union-level region with the correct interaction type in red, and target object
in

@ WALTHER SIKSHANL

Fig. 8. Union-level detection working in complex scenes where more than one ground-
truth union regions involves the same target object or unions that overlap over each
other. The target object is in

Fig. 9. Union-level detection successfully capturing small and remote target objects.
Predicted union-level region with the correct interaction type in red, and target object
in
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