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A Erorr Analysis across the Video Corpus

Videos in our dataset vary substantially in terms of what OP tasks they involve.
This has a large effect over localization accuracy, because it is much harder
to localize a carried target than a visible one. To gain more insight into the
performance of the leading models, we compare the localization IoU on a video-
by-video basis.

Figure S1 depicts per-video IoU of OPNet and two other strong baselines.
Each point corresponds to one video and the color reflects the type of frames in
that video. Figure S1(a) shows how OPNet outperforms Transformer on videos
including carried frames (colored in orange). Clearly, videos with carried frames
are clustered in the lower half of the figure, where OPNet is superior.

(a) (b)

Fig. S1. Sample-by-sample comparison of OPNet with two strong baselines. Each point
represents the IoU of a video from the test set, achieved by OPNet and a baseline. (a)
Videos with more than 7% carried frames are colored in orange. (b) Videos with more
than 7% occlusion frames are colored in green. Points in the lower part corresponds to
videos in which OPNet is superior.

Similarly, Figure S1(b) compares OPNet with the OPNet (LSTM + MLP)
baseline, which contains only the first reasoning component (see Our Approach
section). It shows that OPNet outperforms the baseline on videos including a
high number of occlusion frames (colored in green). It also emphasizes that for
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most videos, OPNet is superior, as illustrated by the great number of points in
the lower half of the figure.

B Model Comparison

We show two videos comparing OPNet with baselines and other variants. In
both videos, four competing methods are applied to the same video scene. We
recommend playing videos at a slow speed.

– The first model comparison video1 shows one visual scene analyzed by four
methods. OPNet (ours) successfully localizes the target throughout the video.
When the target is “carried”, the Transformer model (bottom left) fails to
switch and instead of tracking the carrying object it keeps predicting the
last seen location of the target. The Tracker model (top left) switches to a
wrong object. The Heuristic model (top right) successfully tracks the object
containing the target, adjusting well to the target size. See Figure S2(a).

– The second model comparison video2 shows a visual scene analyzed by four
methods. In this video, the target is being occluded by multiple objects,
including full occlusion, which makes it challenging to track. The Tracker,
Heuristic and OPNet MLP models occasionally drift from the target when
it is fully occluded by a large object. OPNet (ours) successfully localizes the
target throughout the video. See Figure S2(b).

(a) (b)

Fig. S2. Screenshots from the model comparison video files. Blue boxes denote the
ground truth location. Yellow boxes denote the predicted location. OPNet (ours) is at
the bottom right panel. (a) The target is contained and then carried by the blue cone
and is captured successfully by OPNet. (b) The target is occluded by the red cone and
purple ball. These occlusions confuse all baselines, while OPNet localizes the target
accurately.

1 https://youtu.be/TZgoxoKcGrE
2 https://youtu.be/KoxbhgalazU

https://youtu.be/TZgoxoKcGrE
https://youtu.be/KoxbhgalazU
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C Qualitative Analysis

Further insight may be provided by comparing the attention mask of the OPNet
“Who to Track” module and the ground-truth mask of the containing or carrying
object. Figure S3 compares these masks for success and failure cases. It can be
seen that OPNet nicely tracks the correct object for most of the frames.

(a) (b)

Fig. S3. Switching attention across objects. In each pair of panels, each row traces
the probability assigned to an object along the video in the ground truth (left) and
predicted attention (right). (a) The system successfully switches attention from object
1 (target) when it is contained by object 6 and then carried by object 3. (b) After a
successful switch from the object 1 to 10, the system incorrectly witches to object 3.

D Implementation Details

We trained OPNet and baseline variants using L1 loss optimized using Adam
optimizer with β1 = 0.9, β2 = 0.999, ε = 1e − 08, and using a batch size of
16. We initialized the learning rate to 0.001 and employed a learning rate decay
policy, which reduced the learning rate by a factor of 0.8 every 3 epochs without
loss improvement. We tuned all hyperparameters using the validation set. We
experimented with using a higher initial learning rate of 1e − 2, but it turned
out to be too noisy for the relatively small loss induced by the L1 loss. We also
tried lower learning rate (1e− 4), but it did not converge to a good minimum.

The model was trained for 160 epochs, which we verified via manual inspec-
tion to be sufficient for convergence of all models. Early stopping was based on
the validation-set mean IoU.

For comparisons with CATER [1] (Table 5 of the main paper), we used the
accuracy values reported in their paper.

For the learning only from visible frames setup (Section 7.2 and Table 3 of
the main paper) we used the values α = 1 and β = 0.5. We used these values
to normalize the different scales of Llocalization and Lconsistency. We verified
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via manual inspection that (1) for the first 60-70 epochs the loss component
Llocalization is significantly greater than the loss component Lconsistency. Thus,
in this phase the model improves its prediction when the target is visible; (2)
After 60-70 epochs the two loss components have the same scale. Thus, in this
phase the model improves its prediction also when the target is not-visible.

E Significance of Performance Improvement

Tables S1 and S2 present the result of two-sided t-tests comparing OPNet against
other strong baseline models. Each t-test is designed to test whether the two
compared models have the same mean IoU, where the mean is computed across
all the videos in the test set. Table S1 presents the p-value result of five t-tests
comparing OPNet and Transformer on the four OP subtasks, and overall. The
results show that OPNet significantly outperforms Transformer on the contained
and carried subtasks, which is the key goal of this paper. OPNet also signifi-
cantly outperforms Transformer overall with a p-value of 0.01. Table S2 presents
the result of two-sided t-tests comparing OPNet with its baseline version, OP-
Net (LSTM + MLP). The results show that OPNet significantly outperforms
its baseline on all subtasks, except for the carried subtask, where the difference
between models is not statistically significant. OPNet also significantly outper-
forms the baseline over all frames, with p-value < 0.001.

Table S1. p-values computed using paired t-tests. In all subtasks, except occluded and
visible, OPNet outperforms the Transformer baseline, also in the overall score

Subtask OPNet (LSTM + LSTM) Transformer + LSTM p-value

Visible 88.89 90.82 <0.001

Occluded 78.83 80.40 0.183

Contained 76.79 70.71 <0.001

Carried 56.04 28.25 <0.001

Overall 81.94 80.27 0.010

Table S2. p-values computed using a paired t-tests. OPNet significantly outperforms
OPNet (LSTM+MLP) in all subtasks except for carried

Subtask OPNet (LSTM+LSTM) OPNet (LSTM + MLP) p-value

Visible 88.89 88.11 <0.001

Occluded 78.83 55.32 <0.001

Contained 76.79 65.18 <0.001

Carried 56.04 57.59 0.429

Overall 81.94 78.85 <0.001
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F LA-CATER Dataset Preparation

Our new LA-CATER dataset augments the CATER dataset [1] with ground-
truth locations of all objects and with detailed frame level annotations. Also,
instead of using the videos released by CATER we generated new videos using
their configuration, and expanded their code to add ground-truth locations and
frame-level annotations.

We now describe how we classify frames into the four corresponding OP
subtasks. The CATER dataset annotates each frame with the actions occurring
for each object in that frame. These actions are defined as follows:

– Slide. Object changes its position by sliding on the XY-plane.
– Pick-Place. Object is picked up in the air along the Z-axis, moved to a new

location and placed down.
– Contain. A special action performed by cones only, in which cone execute

Pick-Place action and positioned on top of another object.

– Contained Frames. We classify a frame as Contained when the target is
contained by a cone. Explicitly, a frame is classified as Contained when it is
annotated with the “contain” action in CATER, with a cone marked as the
containing object and the target marked as the contained object. A frame
with recursive containment, namely, a containing cone is itself contained by
another cone, is also considered to be a contained frame. Frames are marked
as contained from the moment the target is covered and until the containing
object is picked up as part of pick-place action.

– Carried Frames. We mark a frame as Carried when the target is contained
by a cone (its action is marked in CATER as contained) and slides along
with it. Frames are marked as carried from the beginning of the slide action
until the end of the slide action. Thus, only frames corresponding to the
slide action are marked as carried.

– Occluded Frames. For frame t, we define the occlusion rate (OR) of object
x by object y as

ORx
t (y) =

{
Areax

t ∩Areay
t

Areax
t

Areaxt ≤ Area
y
t

0 Otherwise
(S1)

Where Areaxt is the area of object x in frame t.
We define the distance from camera (DC) of object x

DCx
t =

∥∥locxt − locCA
t

∥∥2 (S2)

locxt , locCA
t denote the 3D coordinates location of object x and the camera

in frame t respectively.
We define an indicator for a fully occluded (FO) object:

FOx
t =

{
1 ∃ y s.t ORx

t (y) = 1 and DCx
t ≥ DC

y
t

0 Otherwise
(S3)
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We then mark frame t as Occluded when the target is fully occluded by
another object. e.g FOtarget

t = 1
– Visible Frames. Finally, we define frame as Visible when the target is not

Contained, Carried or Occluded. Thus, the target needs to be only partially
visible to be considered as visible. For instance, the target is still considered
visible when it is 20% occluded (e.g ∃ y s.t ORx

t (y) = 0.2)

G Annotating Frames in Perfect Perception

For the perfect-perception setup, we extend the definition of fully occluded (FO)
objects from Eq S3. We define an object to be partially occluded (PO) with
respect to the rate p as follows:

POx
t (p) =

{
1 ∃ y s.t ORx

t (y) ≥ p and DCx
t ≥ DC

y
t

0 Otherwise
(S4)

We say that object x is non-visible in frame t with respect to p if POx
t (p) = 1.

We use the value p = 0.7 to decide which objects are non-visible. Contained
objects are defined as non-visible, regardless of their PO value.

Objects are represented by a 5-coordinate vector, containing 4 bounding
box coordinates in (x1, y1, x2, y2) format and an additional visibility bit. Visible
objects are represented by their ground-truth bounding boxes and a turned-on
visibility bit. Non-visible objects are represented by a four-zeros bounding box
coordinates and a turned-off visibility bit.
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