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Abstract. In this supplemental document, we give additional informa-
tion to our method Neural Voice Puppetry. Specifically, we detail on the
used network architectures for the audio-expression network and the ren-
dering network, as well as the training. We report the statistics of our user
study that evaluated visual quality and audio-visual sync, and provide
additional comparisons to state-of-the-art methods. The supplemental
material is concluded with a section about ethical considerations.

1 Network Architectures

Audio2ExpressionNet: A core component of Neural Voice Puppetry is the
estimation of facial expressions based on audio. To retrieve temporal coher-
ent estimations, we employed a process with two stages. In the first stage, we
estimate per frame expressions based on DeepSpeech features. The output of
this network is an audio-expression vector of length 32. This audio-expression
is temporally noisy and is filtered using an expression aware filtering network
which can be trained in conjunction with the per frame expression estimation
network. The temporal filtering mechanism is also depicted in the main paper.
The underlying network that predicts the filter weights gets as

input T' = 8 per-frame predicted audio expressions. We apply

5 1D-convolutional filters with kernel size 3 that reduce the

feature space successively from 8 x 32 over 8 x 16, 8 x8, 8 x4, 8 x2 A
to 8 x 1. Each of these convolutions has a bias and is followed .

by a leaky ReLU activation (negative slope of 0.02). The output
of the convolutional network is input to a fully connected layer
with bias that maps the 1 x 8 input to the 8 filter weights that
are normalized using a softmax function. To train the network
we apply a vertex-based loss as described in the main paper.
The vertices that refer to the mouth region are weighted with ~ Fig- 1. Mask.
a 10x higher loss. We use the mask that is depicted in Fig. 1.

For generalization we used a dataset composed of commentators

from the German public TV (e.g., https://www.tagesschau.de/multimedia/
video/video-587039.html). In total the dataset contained 116 videos.


https://www.tagesschau.de/multimedia/video/video-587039.html
https://www.tagesschau.de/multimedia/video/video-587039.html
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Rendering network: In Fig. 2, we show an overview of our neural rendering
approach. Based on the expression predictions, that drive a person-specific 3D
face model, we render a neural texture to the image space of the target video. A
first network is used to convert the neural descriptors sampled from the neural
texture to RGB color values. A second network embeds this image into the target
video frame. We erode the target image around the synthetic image, to remove
motions of the target actor like chin movements. Using this eroded target image
as background and the output of the first network, the second network outputs
the final image.

Rasterized 3D Model Neural Rendering
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Fig. 2. Our neural rendering approach consists of a deferred neural renderer and an
inpainting network that blends the modified face interior into the target image.

Both networks have the same structure, only the input dimensions are differ-
ent. The first network gets an image with 16 feature channels as input (dimension
of the neural descriptors that are sampled from a neural texture with dimensions
256 x 256 x 16), while the second network composites the background and the
output of the first network, resulting in an 6 channel input. The networks are
implemented in the Pix2Pix framework [6]. Instead of a classical U-Net with
strided convolutions, we build on dilated convolutions. Specifically, we replace
the strided convolutions in a U-Net of depth 5. Instead of transposed convo-
lutions, we use standard convolutions, since we do not downsample the image
and always keep the same image dimensions. Note that we also keep the skip
connections of the classical U-Net. The number of features per layer is 32 in our
experiments, resulting in networks with ~ 2.35mio parameters (which is low in
comparison to the network in Deferred Neural Rendering [13] with ~ 16mio pa-
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rameters). We employ the structure that is depicted in Fig. 3. Each convolution
layer has a kernel size of 3 x 3 and is followed by a leaky ReLLU with negative slop
of 0.2. All layers have stride 1 which means that all layers intermediate feature
maps have the same spatial size as the input (512 x 512). The first convolutional
layer maps to a feature space of dimension 32 and has a dilation of 1. With in-
creasing layer depth the feature space dimension as well as the dilation increases
by a factor of 2. After layer depth 5, we use standard convolutions.

Input Output

3x3 Conv 3x3 Conv
Dilation 1 Dilation 1

3x3 Conv 3x3 Conv
Dilation 2 Dilation 1

3x3 Conv 3x3 Conv
Dilation 4 Dilation 1

3x3 Conv 3x3 Conv
Dilation 8 Dilation 1

3x3 Conv 3x3 Conv
Dilation 16 Dilation 1

Fig. 3. We use a modified U-Net architecture that uses dilated convolutions instead of
strided convolutions. Transposed convolutions are replaced by std. convolutions.

Training Our pipeline is implemented in PyTorch using the Adam [10] opti-
mizer with default settings (81 = 0.9, 82 = 0.999, € = 1- ¢~ 8), a learning rate
of 0.0001 and Xavier initialization. The Audio2EzpressionNet is trained for 50
epochs (resulting in a training time of ~ 28 hours on an Nvidia 1080Ti) with
a learning rate decay for the last 30 epochs and a batch size of 16. The ren-
dering networks are trained for 50 epochs for each target person individually
with a batch size of 1 (~ 30 hours training time, ~ 5 hours in case of strided
convolutions).
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User Study

Fig. 4. Our user study contained 24 videos from different state-of-the-art methods,
including 3 original videos. Here we show some frames of the videos.

In this section, we present the statistics of our user study. Fig. 5 shows a col-
lection of videos that we used for the user study. The clips are from the official
videos of the corresponding methods and are similar to the clips that we show
in our supplemental video. Fig. 5 shows the average answers of our questions,
including the variance.

In the user study we asked the following questions:

— How would you rate the audio-visual alignment (lip sync) in this video?
— How would you rate the visual quality of the video?

With the answer possibilities ” very good”,” good” ,” Neither good nor bad”,”bad”,
”very bad”.

Visual Quality Audio-Visual Sync
very good good neutral bad verygood  good neutral bad
Original — —_—
Ours — —_—
[Thies et al. 2019] — [ —
[Kim et al. 2019] _ —_—
[Chung et al. 2017] _— S —
[Suwajanakorn et al. 2017] —_ _—

[Fried et al. 2019] _ —_—

[Vougioukas et al. 2019] — 1

Fig. 5. Statistics of our user study including the mean and the variance with respect
to the specific methods and question about visual quality and audio-visual sync (lip

sync).
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3 Additional Comparisons to State-of-the-Art

Image-based & Audio-driven Facial Animation: In addition to the results
in the main paper, we also compare to Chen et al. [1] and Vougioukas et al. [14].
For both methods, we use publicly available pretrained models *. We compare
on a sequence of Obama in a self-reenactment scenario (to provide ground truth
images). As can be seen in Fig. 6, our method surpasses the visual image quality
of these methods and generates full frame images (in contrast to normalized
facial images). Since the image-based methods are operating in a normalized
space, we cannot provide a fair quantitative evaluation w.r.t. the ground truth
images. To compute PSNR and landmark errors, we would need to transform
the ground truth images to the normalized space which leads to errors since the
head is moving and we can not assume perfect tracking of the face bounding
box. Especially, rotations of the head are also not handled by the image-based
methods which would dominate the error. Our PSNR and landmark errors for
the self-reenactment sequence of Obama are listed in the main paper.

End-to-end Speech-driven Facial Animation

Hierarchical Cross-modal Talking Face

using Temporal GANs Generation with Dynamic Pixel-wise Loss

™ )
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GRID TIMIT CREMA

Ground Truth

[Vougioukas et al. 2018]

[Chen etal. 2019]

End-to-end Speech-driven Facial Animation
using Temporal GANs

Hierarchical Cross-modal Talking Face
Generation with Dynamic Pixel-wise Loss.
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GRID TIMIT CREMA

Ground Truth

[Vougioukas et al. 2018] [Chen et al. 2019]

End-to-end Speech-driven Facial Animation Hierarchical Cross-modal Talking Face

Generation with Dynamic Pixel-wise Loss

Ground Truth

[Vougioukas et al. 2018] [Chen etal. 2019]

Fig. 6. Comparison to Chen et al. [I] and Vougioukas et al. [141] on a sequence of
Obama (self-reenactment). From top to bottom we show the frames 0, 70 and 305.
Note that we list 3 results for the method of Vougioukas et al. which are based on
different training datasets (GRID, TIMIT, CREMA). The respective sequence is part
of the supplemental video.

3 https://github.com/lelechen63/ATVGnet
4 https://github.com/DinoMan/speech-driven-animation


https://github.com/lelechen63/ATVGnet
https://github.com/DinoMan/speech-driven-animation
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Model-based Audio-driven Facial Animation: In our supplemental video,
we show multiple comparisons to Voca [3]. Fig. 7 shows an image of a legacy
Winston Churchill sequence. In contrast to Voca, our aim is to generate photo-
realistic output videos that are in sync with the audio. Voca focuses on the 3D
geometry requiring a 4D training corpus, while our approach uses a 3D proxy
only as an intermediate step and works on videos from the Internet. Our 3D
proxy is based on a generic face model and, thus, has not the details as a person-
specific modelled mesh. Nevertheless, using our neural rendering approach, we
are able to generate photo-realistic results.

[Cudeiro et al. 2019] Our Intermediate 3b Model

Fig. 7. Qualitative comparison of our method to Voca [3]. It is a representative image
for a talking sequence of Winston Churchill.

Model-based Video-driven Dubbing & Facial Reenactment: State-of-
the-art video dubbing is based on video-driven facial reenactment [5,12,9,13 8].
In contrast, our method is only relying on the voice of the dubber. The "Deferred
Neural Rendering’ [13] is a generic neural rendering approach, but the authors
also show the usage in the scenario of facial reenactment. It builds upon the
Face2Face [12] pipeline and directly transfers the deformations from the source
to the target actor. Thus, tracking errors that occur in the source video (e.g., due
to occlusions or fast motions) are transferred to the target video. In a dubbing
scenario, the goal is to keep the talking style of the target actor which is not
the case for [5,12,9,13]. To compensate the influence of the source actor talking
style, Kim et al. [3] proposed a method to map from the source style to the target
actor style. Our approach directly operates in the target actor expression space,
thus, no mapping is needed (we also do not capture the source actor style). This
enables us to also work on strong expressions, as shown in Fig. 8.

Text-driven Video Synthesis: Fried et al. presented 'Text-based Editing of
Talking-head Video’ [1] which provides a video editing tool that is based on the
transcript of the video. The method reassembles captured expression snippets
from the target video, requiring blending heuristics. To achieve their results they
rely on more than one hour of training data. We show a qualitative comparison
to this method in the supplemental video. Our method only uses the synthetic
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Video-based Audio-based

Source Actor [Kim et al. 2019] Ours

Fig. 8. Visual dubbing fails to map strong expressions from the source to plausible
expressions of the target actor.

audio sequence as input, while the method of Fried et al. uses both the transcript
and the audio. Note that our method generates the entire video, while the text-
based editing method only synthesizes the frames of the new three words.

4 Ethical Considerations

In conjunction with person specific audio generators like Jia et al. [7], a pipeline
can be established that creates video-realistic (temporal voice- and photo-realistic)
content of a person. This is perfect for creative people in movie and content pro-
duction, to edit and create new videos. On the other hand, it can be misused. To
this end, the field of digital media forensics is getting more attention. Recent pub-
lications [11] show that humans have a hard time in detecting fakes, especially,
in the case of compressed video content. Learned detectors are showing promis-
ing results, but are lacking generalizeability to other manipulation methods that
are not in the training corpus. Few-shot learning methods like ForensicTrans-
fer [2] try to solve this issue. As part of our responsibility, we are happy to share
generated videos of our method with the forensics community. Nevertheless,
our approach enables several practical use-cases, ranging from movie-dubbing to
text-driven photo-realistic video avatars. We hope that our work is a stepping
stone in the direction of audio-based reenactment and is inspiring more follow-up
projects in this field.
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