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S.1 Overview

In this supplementary, we provide additional details about our training (Sec.[S.2))
and inference setups (Sec. , and details of our evaluation metrics (Sec. [S.4)).
We provide an extended qualitative comparison of our method to the Image2Surf
baseline (Sec. [S.5)), ablations (Sec. and for visible surface generation on
real-world data (Sec. [S.7]). We show additional qualitative results for hidden
surface generation (Sec.[S.9)) and also provide more visual results for Pix2Surf
(Sec. %&nd more qualitative comparison to Pixel2Mesh-++[3] and AtlasNet[I]
(Sec. [S.10).

S.2 Training Details

For the Single-View case, we train our network in two phases. In the first
phase, we train the NOCS-UV branch with a learning rate of le—4, using the
NOCS Map and the object mask as supervision. In the second phase, we add the
remaining SP branch and train end-to-end until convergence, with a learning rate
of le—4 for cars and 3e—5 for planes and chairs, and using the losses described
in Sec. in the paper.

For the Multi-View case, we have found that pre-training with the single-
view architecture, before switching to the full multi-view architecture results in
better initialization. For this purpose, we start by passing the feature z,,, directly
to the SP branch without max-pooling multiple views. After pre-training, we
switch to the multi-view architecture as described in Sec. in the paper, by
max-pooling the z,, features of all views, and concatenating both this max-pooled
multi-view feature, and the single-view feature z,, for the current view as input
to the MLP. To better fuse multi-view information for learned chart prediction,
the feature map in the middle of CNN encoder and decoder also follows above
fusion operation. We randomly pick 5 views as input during multi-view training.
For our multi-view consistency loss, we need to identify corresponding pixels in
different views. We sample pixels in each view as in the single-view case and find
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corresponding pixels based on their distance in NOCS coordinates. Two pixels
are in correspondence if their NOCS distance is less than le—3.
We separately train on each object category of our dataset.

S.3 Inference Details

One significant advantage of our explicit continuous parametric surface predic-
tion is that we can sample the results at any resolution (e.g. points or vertices).
We generate our final predictions at a regular grid of samples in the unwrapped
uv chart, obtaining a 3D location for each sample (obtained from the SP-Branch).
Since we have exact correspondence to pixels of the input image, each sample
also has a color value (or interpolated color value in super-resolution). Samples
corresponding to background pixels are masked out. To create a mesh, we can
connect neighboring foreground samples with edges. All visual results of our
method in the paper are generated using this approach. We provide more details.

Identifying foreground regions in the unwrapped chart. Unlike AtlasNet, the shape
and topology of the unwrapped surface in our chart is learned by the NOCS-
UV branch, which gives the reconstructed surface more flexibility to represent
arbitrary shapes and topologies. To identify foreground regions in the uv space
of the unwrapped chart, we map the the learned image-space foreground mask
to uv space. Directly unwrap the mask by learned-uv map (two channel output
from NOCS-UV branch) results in pixel cloud with holes in uv space. To solve
this issue, we up-sample the image-space mask and learned-uv map from its
original resolution of 240 x 320 by a factor of 4 using linear interpolation before
mapping mask to uv space. To avoid interpolating across C° discontinuities of
the surface, we only interpolate neighboring pixels that are mapped to similar
uv locations (i.e., the gradient of their uv coordinates is below a threshold). We
then map the up-sampled mask to uv space (resolution of 128 x 128) by the
up-sampled learned-uv map. Finally we up-sample the mask in uv space to the
desired resolution (in paper we use 512 x 512).

In uv space, we additionally post-process the unwrapped foreground mask by
closing small holes using morphological operations. Finally, we remove outliers
using the predicted 3D locations (quarried from SP-Branch) of each mask sample.
A sample of the foreground mask is classified as outlier if the distance in 3D space
to its nearest neighbor is larger than a threshold t. In practice, we use ¢ = 0.03
for chairs and ¢ = 0.02 for cars and airplanes. Similar outlier removing operation
is also applied to image-space mask before identifying foreground regions.

Texturing the unwrapped chart. Similar to the mask, directly unwrapping the
image-space color values to the uv space results in a sparse set of irregular color
samples in uv space. We can interpolate these samples to obtain the color value
at any point in uv space by interpolating the k nearest neighbors (we use k = 4
for our results).



Pix2Surf 3

S.4 Evaluation Metrics

We now define the evaluation metrics used in the paper.

A common surface representation: Before evaluating our metrics, we
convert the results of all methods to a common format to avoid biasing our results
due to different surface representations. We convert all output representations to
the NOCS-Map format defined in X-NOCS [2] using the ground truth camera
model. The NOCS map P samples the reconstructed surface from a single
viewpoint, giving a point cloud where each sample has a 2D pixel coordinate
p and a 3D location x. The 3D location is defined in a canonical coordinate
frame that is shared across views and across instances of the same shape category.
For multi-view reconstructions, we create one NOCS-Map for each viewpoint,
compute the metrics on each NOCS-Map, and average the results over all views.
As AtlasNet [I] ground truth is not in the same ShapeNet version as ShapeNet-
Plain [2], we first scale the AtlasNet results to have the same bounding box
diagonal as the ground truth 2-intersection X-NOCS maps point cloud, and then
align the lower left corner of the bounding box.

The Reconstruction Error is measured as the 2-Way-Chamfer-Distance
between the ground truth NOCS-Map P; and predicted NOCS-Map Ps:
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The reconstruction error for hidden surfaces in Table 2 of paper is computed in
the same way, but using NOCS-Maps of the hidden surfaces.

The Correspondence Error is measured as the squared distance between
the predicted 3D location x; and the ground truth location y; of the same pixel:

1
Ecorr = W Z ||$z_yz||§

piEM

We only evaluate pixels p; € M that are both in the predicted and ground truth
foreground masks.

Counsistency Error is based on the squared distance between the predicted
3D locations of corresponding pixels in different views. For each pair of views a
and b, we identify corresponding pairs of pixels (p?, pz’-) as pairs having a similar
ground truth 3D location in NOCS: |ly¢ — y;’||2 < €. In practice, we set € = 0.001.
We then average the squared distance between the predicted 3D locations = and
:E? of all corresponding pixel pairs P2, :
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With the Discontinuity Score, we take a statistical approach to measure
the correctness of the surface connectivity. While the continuity of implicit or
parametric surface is a property induced by representation and method design,



4 J. Lei et al.

we need to make sure the continuity is correct, i.e. no over-smooth results. We
compute statistics of the C° discontinuities in the predicted surface, and measure
the similarity to the same statistics computed on the ground truth surface. The
statistics are based on the 3D distance ||z; — z;||2 of neighboring foreground
pixels p; and p;. Pixels with a large difference are likely to lie on the border of a
C° discontinuity of the predicted surface. We compute a histogram h of this 3D
distance over all neighboring pixels:
2
hi = H(pz,pj) € Pneighbors | i < ||$1 - xj”Q < ti+1}|7
where t; are the boundaries of the histogram bins and Pnelghbors is the set of all
neighboring pixel pairs. We use a 4-connected neighborhood and choose 20 bins
with bin edges spaced uniformly in [0.05,v/3]. We measure the similarity of two
histograms as the correlation of their normalized bins:
S hih§"
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Note that unlike the other errors we use as evaluation metrics, this is defined as a

score, where higher values imply more accurate discontinuity of the reconstructed
surface.

S.5 Qualitative Comparison to Image2Surf

We show more qualitative comparisons between our baseline Image2Surf and
Pix2Surf in paper Sec. 5.1. Image2Surf has a fatal problem to make “cut” around
the occlusion boundary (i.e., wrong C° discontinuities), which is reflected both
in the red rectangle in Fig. [S1] and discontinuity score in Table 1 in paper.

S.6 Ablations

We provide an analysis and justification of several key design choices. First, we
analyze the importance of using a learned UV chart instead of a fixed chart like

t
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\

Fig. S1. Qualitative Comparison to Image2Surf. The first row are the results of Pix2Surf
and the second row are for Image2Surf. Each instance is viewed from 2 different
viewpoints. Image2Surf wrongly connects disjoint parts and results in strong distortions,
which are solved by Pix2Surf’s learned chart.
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Image2Surf. As seen in Sec. and Table[l|in the paper, Pix2Surf outperforms
Image2Surf on all categories for reconstruction error. Second, we analyze the
utility of multi-view feature pooling and consistency loss. As seen in Table|l| (rows
4-7), these two features significantly improve performance. We also justify the
use of intermediate NOCS map regression by the NOCS-UV branch, and the need
for the UV amplifier (Table . We do so by examining networks without these
two components. For the NOCS map ablation, we train the network from scratch
without pretraining the NOCS-UV branch, and for the UV amplifier ablation,
we directly input the learned UV coordinates to the SP branch and increase the
dimension of a latent image code to 256. When conducting the experiments on
the chair category, the results (Table show that these components help learn
better reconstructions.

Table S1. We experimentally verify the usefulness of NOCS map regression and the
UV amplifier. NOCS map regression provides intermediate supervision while the UV
amplifier balances information. Here we report average reconstruction error computed
on the wvisible part (equal training epochs for all methods).

| NoUVAmp. | NoNOCS | Pix2Surf
Chair | 10.37 | 3.64 | 2.61

S.7 Qualitative Results on Real-World Data

We show more results for generalization to real world data mentioned in paper.
In Fig. [S2] we show single- and multi-view results for Pix2Surf that is trained on
ShapeNet COCO and inference on real world car. Note that the texture in each
view separately is better than the multi-view aggregation. This is caused by the
different light condition from different viewpoints. As our main concern in this
paper is not to fuse the texture from multiple views, we leave the improvement
of the texture to future works.
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Fig. S2. Real world image generalization. The top part is single-view visualization:
input image, unwrapped chart with texture and 3 viewpoints of the reconstruction
for each instance. The bottom part is multi-view aggregation visualization. For every
instance, each row is: input images, unwrapped charts with texture, 3 viewpoints for
each view’s result separately and finally multi view aggregation.
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S.8 More Results

Figure [S3| shows more results of Pix2Surf including the learned UV map (as
shown in Figure and reconstruction outputs of both single-view and multi-view
architectures. See the caption for the details.

Fig. S3. Single-view and multi-view Pix2Surf reconstruction results. The results for each
object are presented in three rows. The first row shows five input views. Note that we do
not have camera parameters for any of these views. The second row shows the per-view
UV space that is generated by the multi-view variant of Pix2Surf. The UV space is
not directly constrained by any loss; the flattening of the objects that we can observe
and the large degree of consistency between different views is an emergent property of
our network. In the third row, we show, from left to right, (a) the reconstructed 3D
surface obtained by merging Pix2Surf single-view reconstructions (SV), (b) the Pix2Surf
multi-view reconstruction (MV), and (c) the ground truth reconstruction (GT). The
last three columns show the same results from a different viewpoint. Note the reduction
in the number of gaps and surface discontinuities when comparing the multi-view to
the single-view results.



8 J. Lei et al.

S.9 Qualitative Results for Hidden Surface Generation

The following table provides more visual results of Pix2Surf Two-Intersection
version (Sec 5.2 in paper), and comparison with X-NOCS [2]. Pix2Surf can easily
be extended to capture the invisible surface and is more accurate and smooth
than X-NOCS.

View 1 | View 2 | View 3

Pix2Surf X-NOCS Ground | Pix2Surf X-NOCS Ground | Pix2Surf X-NOCS Ground
(sv) (sv) Truth (sv) (sv) Truth (sv) (sv) Truth
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S.10 Qualitative Comparisons

The following table demonstrates qualitative comparisons among our Pix2Surf
(both single-view and multi-view architectures), AtlasNet[I], and Pixel2Mesh++ [3].
The colors in AtlasNet results show different output patches.

View 1 | View 2 | View 1

Ground Single Multi- Ground Pixel2
Truth View View Truth Mesh++

Single
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