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Appendix

Details of Decoder Networks

We show the details of the decoder networks in the tables below. The former
and latter parts of each network correspond to the tentative reconstruction and
residual refinement, respectively. k is the kernel size. chns is the number of in-
put/output channels. activ is the activation functions. input denotes the input
to each layer. “Images” means the images captured by a coded-aperture camera.
output corresponds to the reconstructed light field. Single and 2-S are the same
configurations as the counterparts used in Inagaki et al. [17].

Table 1. 5× 5 views

Layer k chns activ input

Single
conv1-0 5× 5 1/2 - Images
conv1-1 5× 5 2/5 - conv1-0
conv1-2 5× 5 5/12 - conv1-1
conv1-3 5× 5 12/25 - conv1-2

2-S and 2-D
conv1-1 5× 5 2/5 - Images
conv1-2 5× 5 5/12 - conv1-1
conv1-3 5× 5 12/25 - conv1-2

3-D (V-shape)
conv1-1 5× 5 3/5 - Images
conv1-2 5× 5 5/12 - conv1-1
conv1-3 5× 5 12/25 - conv1-2

Single, 2-S, 2-D, and 3-D (V-shape)
conv2-1 3× 3 25/64 ReLU conv1-3
conv2-2 3× 3 64/64 ReLU conv2-1
conv2-3 3× 3 64/64 ReLU conv2-2

...
...

...
...

...
conv2-19 3× 3 64/64 ReLU conv2-18
conv2-20 3× 3 64/25 - conv2-19

output conv1-3 + conv2-20

Table 2. 8× 8 views

Layer k chns activ input

Single
conv1-0 5× 5 1/2 - Images
conv1-1 5× 5 2/4 - conv1-0
conv1-2 5× 5 4/8 - conv1-1
conv1-3 5× 5 8/16 - conv1-2
conv1-4 5× 5 16/32 - conv1-3
conv1-5 5× 5 32/64 - conv1-4

2-S
conv1-1 5× 5 2/4 - Images
conv1-2 5× 5 4/8 - conv1-1
conv1-3 5× 5 8/16 - conv1-2
conv1-4 5× 5 16/32 - conv1-3
conv1-5 5× 5 32/64 - conv1-4

3-D (V-shape)
conv1-1 5× 5 3/4 - Images
conv1-2 5× 5 4/8 - conv1-1
conv1-3 5× 5 8/16 - conv1-2
conv1-4 5× 5 16/32 - conv1-3
conv1-5 5× 5 32/64 - conv1-4

Single, 2-S, and 3-D (V-shape)
conv2-1 3× 3 64/64 ReLU conv1-5
conv2-2 3× 3 64/64 ReLU conv2-1
conv2-3 3× 3 64/64 ReLU conv2-2

...
...

...
...

...
conv2-19 3× 3 64/64 ReLU conv2-18
conv2-20 3× 3 64/64 - conv2-19

output conv1-5 + conv2-20
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Evaluation against scene motions

The performance of our method against scene motions depends on the training
dataset we used. Our training dataset, generated with pseudo motions, does not
include large motions and temporal disocclusions.

To analyze this effect, we conducted a controlled experiment. We used the
CG scene mentioned in the paper, and changed the global scale of the scene
motions. For the 101-st frame, the reconstruction quality was 32.42 dB with the
default speed (this is the condition reported in Fig. 6 left). When we doubled the
speed, the quality decreased by 4.49 dB. Meanwhile, when we halved the speed,
the quality increased by 1.53 dB. When we stopped the motion (the scene was
static), the quality was 34.10 dB, which was slightly better than 33.77 dB of
Inagaki’s method [17] for the same static scene. We think this slightly better
quality comes with an increased amount of training dataset (25 times larger
than that in [17]) and three acquired images instead of two; three images lead to
better robustness against noise even though the aperture patterns are only two.

To overcome the limitation, we need to enhance the training dataset and
improve the network architecture. We also need to improve the camera hardware
to increase the frame-rate, which will help to reduce the amount of motions
between the frames.


