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In this supplementary material, we present an analysis of different sizes of the
scale maps and the imitation loss in Sec. 1 and 2, respectively, and an ablation
study on our framework including comparisons on a large dataset in Sec. 3. We
also show more qualitative results of the student networks which have the same
architectures as various SR methods in Sec. 4.

Table A: Average PSNR of student
networks (FSRCNN [4]) with different
sizes of the scale maps on the Set5 [3]
dataset (2×).

Dimension of PSNRscale parameter

R1×1×1 37.29 (+0.14)
R1×H′×W ′

37.29 (+0.14)
RC×1×1 37.32 (+0.17)
RC×H′×W ′

37.33 (+0.18)

Table B: Average PSNR of student net-
works (FSRCNN [4]) trained with different
teacher networks using various balance pa-
rameters λT on the Set5 [3] dataset (2×).

λT PSNR

0 37.23 (+0.05)
10−6 37.25 (+0.10)
10−4 37.33 (+0.18)
10−2 37.27 (+0.12)
1 37.25 (+0.10)

1 The size of scale map
We show in Table A performance comparisons of student networks having the
same architecture as FSRCNN [4] for different sizes of scale maps in terms of
the average PSNR. It shows that we can achieve the best performance, when
the sizes of the scale map and a feature map in the teacher are the same. This
adaptively controls the extent of distillation on each element of the feature map
in the teacher network.

2 Imitation loss
We show in Table B performance comparisons of student networks having the
same architecture as FSRCNN [4]. They are trained with different teacher net-
works that use different parameters λT for the imitation loss. The imitation loss
encourages compact features X̂T extracted from HR images to be close to the
LR counterparts, facilitating the initialization of a student network. We can see
from the first row that the performance gain decreases without the imitation
loss, suggesting that this loss is crucial for the weight transfer in our framework.
∗ equal contribution † corresponding author (bumsub.ham@yonsei.ac.kr)
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Table C: Average PSNR of student networks, trained with variants of our framework,
on the B100 [11] dataset.

Hourglass
architecture

Weight
transfer LT

im LS
distill

Student
PSNR

- - - - 31.58 (baseline)
✗ - - MAE 31.60 (+0.02)
✓ ✗ ✗ MAE 31.61 (+0.04)
✓ ✓ ✗ MAE 31.63 (+0.05)
✓ ✓ ✓ MAE 31.65 (+0.07)
✓ ✓ ✓ VIDG [2] 31.66 (+0.08)
✓ ✓ ✓ VIDL [2] 31.65 (+0.07)

Table D: Average PSNR of student networks with different distillation frameworks and
losses on the Set5 [3] and B100 [11] datasets.

Type Teacher
LS

distill
Student PSNR

Model Input Set5 [3] B100 [11]

K
no

w
le

dg
e

D
is

ti
lla

to
n FSRCNN-L LR MAE 37.20 (+0.05) 31.61 (+0.03)

FSRCNN-L LR FitNet [12] 37.16 (+0.01) 31.59 (+0.01)
FSRCNN-L LR AT [14] 37.21 (+0.06) 31.61 (+0.03)
FSRCNN-L LR SRKD [6] 37.21 (+0.06) 31.60 (+0.02)
FSRCNN-L LR VIDL [2] 37.23 (+0.08) 31.61 (+0.03)

P
ro

po
se

d
D

is
ti

lla
to

n Ours HR MAE 37.27 (+0.12) 31.65 (+0.07)
Ours HR FitNet [12] 37.31 (+0.16) 31.64 (+0.06)
Ours HR AT [14] 37.31 (+0.16) 31.65 (+0.07)
Ours HR SRKD [6] 37.29 (+0.14) 31.64 (+0.06)
Ours HR VIDL [2] 37.33 (+0.18) 31.65 (+0.07)

If the parameter λT becomes too large (e.g., 1 in the fifth row), the imitation loss
forces the compact features to be identical to the LR images, which is relatively
easy to achieve. In this case, our framework can be viewed as a self-distillation
method [5], which however does not benefit from privilege information and de-
grades the performance (e.g., a 0.08dB decrease in the fifth row compared to the
result in the third row). Overall, the parameter λT of 10−4 gives a good com-
promise between imitated and privileged features, allowing the student network
to achieve the best result.

3 Ablation studies
We present an analysis on each component of our framework using the Set5 [3]
and B100 [11] datasets. We show in Table C, corresponding to Table 1 in the
paper, the average PSNR on B100 [11] for student networks trained with vari-
ants of our framework. We can see that the average PSNR gradually increases by
adding each component of our framework, which coincide with the findings on
Set5 [3]. Table D compares the performance of the student networks using differ-
ent distillation methods and losses. The first five and the last five rows show the
average PSNR of the conventional knowledge distillation framework for network
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compression and our framework, respectively, with different distillation losses.
We can see our framework shows better performance than the knowledge distil-
lation framework consistently in terms of PSNR on the Set5 [3] and B100 [11]
datasets. This demonstrates that distilling features from the privileged informa-
tion (i.e., ground-truth HR images) is important, regardless of loss functions,
and the proposed framework is more effective for the SISR task, boosting the
performance of the student by a large margin. Note that the losses we used are
typically leveraged for classification tasks to transfer ‘dark knowledge’ [7]. To
our knowledge, there are no distillation losses effective to regression tasks. We
do believe that the performance of our framework can be further boosted by the
loss function specially-designed for our framework or at least for the regression
tasks.

4 Qualitative results
Figures A, B, C, D, E show reconstruction examples on Set14 [15], B100 [11],
and Urban100 [8] datasets using student networks, adopting the architectures
of FSRCNN-L, FSRCNN [4], IDN [9], CARN [1], and VDSR [10], respectively.
We can clearly see that the student networks trained with our framework consis-
tently show better visual results compared with the original ones. Especially, our
student networks accurately reconstruct sharp boundaries (e.g., the alphabet in
the last row in Fig. A and the marina floor in the first row in Fig. C), small-scale
structures (e.g., windows in the second and third rows in Fig. B, and the iron
railings in the third row in Fig. C), textures (e.g., the patterns of the zebra in
the third row in Fig. D), and straight lines (e.g., the ceiling of the bus stop in the
second row in Fig. C and the bridge in the third row in Fig. E). These results
indicate that our framework is generally applicable to the other SR methods,
such as IDN, CARN, VDSR, FSRCNN, and the variant of FSRCNN.
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Urban100
img-98 (3x)

Ground truth
(PSNR/SSIM)

Bicubic Int.
(23.54/0.6791)

FSRCNN-L∗

(26.78/0.8303)
FSRCNN-L (Ours)

(27.05/0.8374)

Urban100
img-91 (3x)

Ground truth
(PSNR/SSIM)

Bicubic Int.
(17.32/0.5162)

FSRCNN-L∗

(19.97/0.7116)
FSRCNN-L (Ours)

(20.05/0.7150)

Set14
img-12 (4x)

Ground truth
(PSNR/SSIM)

Bicubic Int.
(21.89/0.8138)

FSRCNN-L∗

(25.81/0.9321)
FSRCNN-L (Ours)

(25.95/0.9338)

Fig. A: Visual comparison of reconstructed HR images (3× and 4×) on Set14 [15] and
Urban100 [8]. We report the average PSNR/SSIM in the parentheses. Compared to
the FSRCNN-L, our model reconstructs straight lines and object boundaries more
accurately. *: models reproduced by ourselves using the DIV2K dataset [13] without
distillation; Ours: student networks of our framework. (Best viewed in color.)
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Set14
img-12 (3x)

Ground truth
(PSNR/SSIM)

Bicubic Int.
(23.62/0.8756)

FSRCNN∗

(27.04/0.9471)
FSRCNN (Ours)
(27.36/0.9541)

Urban100
img-25 (3x)

Ground truth
(PSNR/SSIM)

Bicubic Int.
(26.30/0.6557)

FSRCNN∗

(28.18/0.7105)
FSRCNN (Ours)
(28.42/0.7203)

Urban100
img-32 (3x)

Ground truth
(PSNR/SSIM)

Bicubic Int.
(25.10/0.7240)

FSRCNN∗

(27.03/0.7932)
FSRCNN (Ours)
(27.37/0.8085)

B100
img-70 (4x)

Ground truth
(PSNR/SSIM)

Bicubic Int.
(27.98/0.7388)

FSRCNN∗

(29.44/0.7861)
FSRCNN (Ours)
(29.57/0.7920)

Urban100
img-51 (4x)

Ground truth
(PSNR/SSIM)

Bicubic Int.
(23.77/0.7389)

FSRCNN∗

(26.53/0.8459)
FSRCNN (Ours)
(26.76/0.8560)

Fig. B: Visual comparison of reconstructed HR images (3× and 4×) on Set14 [15],
Urban100 [8], and B100 [11]. We report the average PSNR/SSIM in the parentheses.
Compared to the baseline FSRCNN, our model reconstructs small-scale structures,
straight lines, and object boundaries more accurately. (Best viewed in color.)
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B100
img-91 (2x)

Ground truth
(PSNR/SSIM)

Bicubic Int.
(27.61/0.8225)

IDN∗

(31.37/0.9073)
IDN (Ours)

(31.43/0.9082)

Urban100
img-45 (2x)

Ground truth
(PSNR/SSIM)

Bicubic Int.
(25.24/0.8343)

IDN∗

(28.13/0.9268)
IDN (Ours)

(28.59/0.9277)

Urban100
img-65 (2x)

Ground truth
(PSNR/SSIM)

Bicubic Int.
(23.92/0.7694)

IDN∗

(25.73/0.8548)
IDN (Ours)

(25.99/0.8565)

Urban100
img-59 (3x)

Ground truth
(PSNR/SSIM)

Bicubic Int.
(21.88/0.5251)

IDN∗

(23.51/0.6558)
IDN (Ours)

(23.58/0.6579)

Fig. C: Visual comparison of reconstructed HR images (2× and 3×) on B100 [11] and
Urban100 [8]. We report the average PSNR/SSIM in the parentheses. Compared to
the baseline IDN, our model reconstructs repetitive patterns, straight lines, and object
boundaries more accurately. (Best viewed in color.)
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Urban100
img-11 (2x)

Ground truth
(PSNR/SSIM)

Bicubic Int.
(25.33/0.8040)

CARN∗

(28.06/0.9036)
CARN (Ours)
(28.51/0.9098)

Urban100
img-53 (2x)

Ground truth
(PSNR/SSIM)

Bicubic Int.
(22.66/0.7473)

CARN∗

(25.06/0.8542)
CARN (Ours)
(25.23/0.8590)

B100
img-51 (3x)

Ground truth
(PSNR/SSIM)

Bicubic Int.
(22.53/0.7072)

CARN∗

(23.96/0.7766)
CARN (Ours)
(24.39/0.7824)

Urban100
img-40 (4x)

Ground truth
(PSNR/SSIM)

Bicubic Int.
(21.00/0.6680)

CARN∗

(25.31/0.8611)
CARN (Ours)
(25.65/0.8672)

Fig. D: Visual comparison of reconstructed HR images (2×, 3×, and 4×) on Ur-
ban100 [8] and B100 [11]. We report the average PSNR/SSIM in the parentheses.
Compared to the baseline CARN, our model reconstructs small-scale structures, repet-
itive patterns, and straight lines more accurately. (Best viewed in color.)
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B100
img-91 (2x)

Ground truth
(PSNR/SSIM)

Bicubic Int.
(27.60/0.8218)

VDSR∗

(31.04/0.9013)
VDSR (Ours)
(31.22/0.9039)

Set14
img-13 (3x)

Ground truth
(PSNR/SSIM)

Bicubic Int.
(24.05/0.6830)

VDSR∗

(26.67/0.7686)
VDSR (Ours)
(26.90/0.7712)

B100
img-20 (4x)

Ground truth
(PSNR/SSIM)

Bicubic Int.
(20.67/0.5540)

VDSR∗

(21.70/0.6598)
VDSR (Ours)
(21.78/0.6663)

B100
img-48 (4x)

Ground truth
(PSNR/SSIM)

Bicubic Int.
(23.39/0.7551)

VDSR∗

(26.24/0.8532)
VDSR (Ours)
(26.47/0.8576)

Fig. E: Visual comparison of reconstructed HR images (2×, 3×, and 4×) on B100 [11]
and Ser14 [15]. We report the average PSNR/SSIM in the parentheses. Compared to
the baseline VDSR, our model reconstructs small-scale structures, straight lines, and
object boundaries more accurately. (Best viewed in color.)
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