
Supplementary Material for Unsupervised
Learning of Category-Specific Symmetric 3D

Keypoints from Point Sets

Clara Fernandez-Labrador1,2,3, Ajad Chhatkuli3, Danda Pani Paudel3,
Jose J. Guerrero1, Cédric Demonceaux2, and Luc Van Gool3,4

1 I3A, University of Zaragoza, Spain
2 VIBOT ERL CNRS 6000, ImViA, Université de Bourgogne Franche-Comté, France
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Abstract. In this supplementary document, we provide more in-
sights regarding symmetry, including the proof of Proposition 1. Fur-
thermore, an experiment showing the generalization of our method on
real data is included, as well as some results for the segmentation label
transfer task. Finally additional qualitative results are presented on the
four datasets evaluated in the main paper at the end of the document.

1 Symmetry

1.1 Symmetric deformation space.

Proof. The two linear spaces due to the two basis BC 1
2

and B′
C 1

2

are symmetric

by Definition 1 as BC 1
2

is symmetric to B′
C 1

2

for any K ∈ Z. Let ci ∈ L and

c′j ∈ L′ represent the respective half coefficients for any two shape instances i
and j, where L and L′ defines the spaces of the predicted half coefficient vectors.
Consequently, the actual deformation spaces are symmetric to one another if L
and L′ are equal. We define p : p(ci) as the probability distribution of ci and
q : q(c′j) as the probability distribution of c′j . If p and q come from the same
distribution, we approach p = q. Then we have:

if ci = c′j ,

either, p(ci) = q(c′j) = 0,

or, p(ci) > 0 and q(c′j) > 0

for all, ci ∈ L, c′j ∈ L′.

(1)

Condition (1) guarantees that L = L′ and thus we obtain a symmetric deforma-
tion space. ut
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Note that for condition (1) to be true, we do not require the two distribu-
tions to be equal, however, it is sufficient and desirable to have so. Therefore,
Proposition 1 in the main text highlights such sufficient and desirable case. It is
particularly meaningful when we are learning to predict the coefficients through
stochastic methods such as a neural network training. In our network architec-
ture indeed one can expect the distributions of these two vectors to be similar
given the data exhibits such a symmetric deformation space, since the prediction
branches of ci and c′i are very similar. Alternatively, one may also try to enforce
the condition using a KL divergence loss.
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Fig. 1: Coefficients distribution. Mean values of ci components (left) and c′i
components (right) for the Dynamic FAUST [1]. The mean of the variances for
the different components are: ci : 0.54, c′i : 0.50. The figure shows that the
network learns similar distribution for the coefficients ci and c′i.

1.2 Symmetry Plane Parametrization.

As mentioned in Sec. 5.3 in the main paper, we observe that handling misaligned
data with unsupervised methods can lead to some rotation ambiguities. More
specifically, we observe that different combination of basis shapes can result in
different alignments.

As we show in Fig. 5 in the text, predicting the symmetry plane of the
object category allows to have more control over the predicted instance poses.
We came up with the idea of learning an additional common parameter, RC ,
which is directly related to the symmetry plane. By adding this category-specific
parameter, the network learns a common rotation for all the objects in the
category. As a consequence, the instance-wise rotation, Ri, can be thought like
an offset from the reference basis alignment. Several evaluations confirmed that
this strategy helps the learning process, reducing the rotation ambiguities.

2 Additional Experiments

2.1 Keypoints correspondence

We provide a complete overview for all the object categories evaluated regarding
the keypoints correspondences across instances in Fig. 2. This demonstrates the
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ability of our model to capture and model the inter-subject shape variations and
intra-subject deformations in a category.
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Fig. 2: Keypoints correspondence across instances. We cluster the key-
points predicted for all the instances of a category to show their geometric con-
sistency. Note how our keypoints get neatly clustered creating a general 3D shape
template.

2.2 Segmentation Label Transfer

As demonstrated in Sec. 5.2 in the main paper, our predicted keypoints cor-
respond to semantically meaningful locations. Therefore, here we explore the
utility of the proposed category-specific keypoints for the segmentation label
transfer task. In this experiment, for every point in the original shape sij ∈ Si,
we find its closest category-specific keypoint pik ∈ Pi, and transfer the corre-
sponding semantic label to it. We assume the keypoints labels are known and
correspond to those in Fig. 4 in the paper.

Some qualitative results are shown in Fig. 3. Our method achieves full cor-
respondence between instances, therefore avoiding placing keypoints in less rep-
resentative parts. An example is the engine, in grey, in the case of airplanes.
This is reflected in the label transfer since there is no distinction of these parts.
Besides that, only with eight keypoints in the example, we achieve reasonable
results, close to the ground truth data.

2.3 Real Data

In this section, we show the performance of our method for real data in Fig.
4. For this experiment, the network is trained on the chair category from the
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Fig. 3: First row: results of performing semantic label transfer with our key-
points. Second row: ground truth. This is evaluated in ShapeNet part dataset
[2] using eight keypoints for the label transfer.

ModelNet10 dataset [3] and tested on real chairs from the SUNRGBD dataset [4].
To generate the real data dataset from [4], we crop the points inside the ground
truth 3D bounding boxes provided by the authors. Real data entail additional
challenges. This is not only because shapes appear incomplete and noisy, but
also because other objects may cause occlusions, e.g. part of a table occluding
a chair. As illustrated in Fig. 4, even though real data is fairly challenging, our
network can still produce corresponding meaningful keypoints.

Being able to generalize to previously unseen real objects as demonstrated
in Fig. 4 is crucial and really useful for many tasks such as guide for shape
completion or shape generation.

Fig. 4: Results in real chairs from SUNRGBD dataset [4] training with CAD
chairs from ModelNet10 dataset [3].
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3 Qualitative results

In this section, we provide additional qualitative results on various object cat-
egories from the datasets evaluated in the paper; ModelNet10 [3] in Fig. 5,
ShapeNet parts [2] in Fig. 6, Dynamic FAUST [1] in Fig. 7 and Basel Face
Model 2017 [5] in Fig. 8.

Again, we note that our network predicts corresponding keypoints between
instances of the same category and consistently associates the same keypoint
with the same semantic part. For instance, for the chair object category, the
keypoint colored in pink is always associated with the chair back, the keypoint
colored in cyan is associated with the front left leg, etc.

Fig. 5: Qualitative results in table, chair and bed categories from ModelNet10
dataset [3].
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Fig. 6: Qualitative results in airplane, car and motorbike categories from
ShapeNet parts dataset [2].

Fig. 7: Qualitative results in human bodies from Dynamic FAUST dataset [1].

Fig. 8: Qualitative results in faces from Basel Face Model 2017 dataset [5].
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