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1 Derivation of the PSFs

In this section, we derive how the PSF of the projected pattern depends on the
phase mask height h and the scene depth z based on Fourier optics theory [1].

The mask is inserted on the pupil plane of the projection lens. The pupil
function can be represented as a complex-valued 2D matrix P .

P = A exp(iφ) (1)

The amplitude part A is a constant disk function. The phase part φ is consist
of two components.

φ = φM + φDF (2)

φM is introduced by the phase mask. It depends on the height map of the
phase mask h.

φM = k∆nh (3)

where k is the wave vector k = 2π/λ and ∆n is the reflective index difference
between air and the material of the phase mask.

φDF is introduced by defocus, which is a quadratic phase related to the
in-focus depth z0 and the actual depth z of a scene point.

φDF = k
x21 + y21

2

(
1

z
− 1

z0

)
(4)

where (x1, y1) are the coordinates in the pupil plane.
For an incoherent system, the PSF is the squared magnitude of the Fourier

transform of the pupil function.

PSF (h, z) = |F{P (h, z)}|2 (5)

The PSF is a function of the mask height map h and the depth of the scene z. We
do not include the PSF dependence on the wavelength because a narrow-band
light source is used here.
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2 Networks detail
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Fig. S1. Network architecture. Both the XYNet and ZNet have this encoder-decoder
architecture, with only the difference that C = 2 for XYNet and C = 1 for ZNet.

For the reconstruction networks (Sec. 4.2 in the main text), we use XYNet
for x, y estimation, and ZNet for z estimation. We found that two separate
networks provide the best result. One possible reason is that XYNet should
learn from the global context, while ZNet should focus on the local pattern. We
tried various networks with different receptive fields. But these networks show
similar performance.

In our paper, we have almost the same encoder-decoder architecture (Fig. S1)
for XYNet and ZNet. The input image is ILN

c (256× 256× 1). Each convolution
operator consists of a 3 × 3 convolution, a rectified linear unit (ReLU) and
a batch normalization (BN) [2]. The downsampling is achieved using a 2 × 2
max-pooling operation, and the upsampling is achieved using resize-convolution.
Concatenation is applied between the encoder and decoder to avoid the vanishing
gradient problem. At the final layer, a 1×1 convolution is used with a sigmoid
function to map each pixel to the given range. The only difference between
XYNet and ZNet is that the number of the output channels C is 2 for XYNet
and 1 for ZNet.

3 Derivation of image reprojection

As mentioned in Sec. 4.1, we include the reprojection loss to enforce the network
to learn the depth from perspective distortion. To calculate the reprojected image
Îc, we use a similar formula as mentioned in Eq. 5 of the main text.
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For the image warping part, we have IBp and Tcp from the ground truth and

calculate ẑc from ẑcV iew
p . Both ẑc and ẑcV iew

p are in the camera view. But ẑc is

the depth to the camera, while ẑcV iew
p is the depth to the projector. Based on

the pixel location and the camera intrinsic parameters, it is straightforward to
represent the 3D location of each pixel in the camera view as (xczc, yczc, zc)

T

(xc and yc are in the projected coordinates). The relationship between ẑc and
ẑcV iew
p are as follows.

zcV iew
p =T (3)

cp


xc
yc
zc
1

 =
(
t31 t32 t33 t34

)
xczc
yczc
zc
1

 (6)

Only the third row of the transformation T
(3)
cp is required for z. So we can find

ẑc from ẑcV iew
p directly.

ẑc =
ẑcV iew
p − t34

t31xc + t32yc + t33
(7)

For the occlusion mask, we directly pick the region with a threshold of Ic to
reduce the computational complexity.

Finally, the formula of the reprojected image is

Îc =WI(IBp , ẑc, Tcp) · (Ic > ε) (8)

4 Simulation results analysis
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Fig. S2. Relation between the camera-projector baseline and the estimation losses
Lx

rms, L
y
rms, L

z
rms.

Our proposed method is able to recover the 3D scene from a freeform cam-
era. Here, we investigate how the camera-projector baseline affects the estimation
accuracy. 500 testing scenes are generated using our simulation pipeline with dif-
ferent baselines along the x-axis. For each scene, the losses Lx

rms, L
y
rms, L

z
rms are
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calculated. The scatter plots are shown in Fig. S2. For x estimation, it gives the
best accuracy when there is no baseline. As the baseline increases, the average
and the variation of the loss increase. This is mainly because that the perspec-
tive distortion for large-baseline cases makes the global pattern estimation more
challenging. Similar phenomenon exists fo y estimation. But since there is no
baseline in the y axis, the accuracy is less affected by the distortion. For z esti-
mation, the loss is almost independent on the baseline. We think the reason is
that the ZNet mainly estimates the depth from the defocused blur, which is not
related to the baseline. For all three losses, there are outliers corresponding to
challenging scenes, which are not included in the robust fitting.

5 Mask fabrication and calibration

5.1 Mask fabrication

We fabricate the designed phase mask using a multi-layer photolithography tech-
nique on a fused-silica glass substrate. Briefly, the fabrication involves three
steps, repeated multiple times. Step 1 is to spin coat photoresist onto the sub-
strate. Step 2 is transferring pattern from a photomask to the photoresist through
exposure to the UV light and then removing the UV-exposed photoresist. Step
3 is etching the exposed glass substrate using reactive ion etching (RIE) pro-
cess. Each round of fabrication results in a binary profile change on the sub-
strate. Hence, by repeating the process N-times, a 2N -level phase mask can be
achieved [3].

Our mask has 15 height levels of 73 nm each, with a total height of 1095
nm. The fabrication is achieved by repeating the steps mentioned above 4 times
using four different photomasks. Our substrate was a 0.5mm-thick 4 inch Fused
Silica wafer, and we used MICROPOSIT S1818 photoresist. After fabrication,
the phase mask was cut out from the wafer to a manageable size.
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Fig. S3. (Left) PSFs comparison between simulation and experiment. (Right) Exper-
imental depth accuracy evaluation.



FreeCam3D 5

5.2 PSFs calibration

Although the PSF at different depth is calculated from the simulation as shown
in Fig. 4 of the main text, we calibrate our prototype experimentally to account
for any mismatch born out of physical implementation such as aberrations in
fabricated phase mask and misalignment during the mask installation.

We used sparse grid dots as the projector pattern, and placed the camera
to be co-located with the projector with a beam splitter so that there is no
perspective distortion. The scene is a planar whiteboard perpendicular to the
optical axis. During the calibration, the whiteboard was placed at 21 depths
ranging from 0.7m to 0.95m, and the corresponding image was captured at each
depth. For each image, we averaged the local pattern generated from grid dots
as the PSF at that depth.

The comparison between the simulated PSFs and calibrated PSFs are shown
on the left side of Fig. S3. As we can see, they follow similar structures. But the
Experimental PSFs look more blurry due to imperfection in the experiment. We
believe a better fabrication process can further improve our experiment perfor-
mance.

5.3 Depth accuracy evaluation

To make sure the experimental setup working properly, we evaluate the depth
estimation accuracy. We measure the depth reconstruction of a whiteboard at
different depths ranging from 0.7m - 0.95m. The camera and projector is co-
located using a beam splitter. We calculate the average and stand deviation for
each depth and plot the results in Fig. S3. Our estimation matches the ground
nicely with small errors. The estimation is slightly worse near the depth limit,
which might be caused by a lack of training data. The average root mean square
error for the whole depth range is 3.7 mm.

6 Analysis for textured scenes
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Fig. S4. Simulation evaluation on textured scenes
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As mentioned in the main text, intensity variation caused by the texture of
the scene might affect the reconstruction accuracy. Nevertheless, our method is
able to work for textured scene, as shown in Fig. 4 of the main text.

To evaluate how the reconstruction accuracy depends on texture, we test on
data with checkerboard pattern as the texture. The contrast is defined by the
ratio between the bright and dark region of the checkerboard. Fig. S4 shows
the rms error for x, y, z. As we can see, even for the algorithm trained with
textureless scenes, it still works well for small contrast. The main reason is the
local normalization that we applied on the image as the pre-processing step, to
reduce the intensity variation. And the results can be further improved when
the algorithm is trained with textured scenes.
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