Social ODE: Multi-agent Trajectory Forecasting with Neural Ordinary Differential Equations

Song Wen, Hao Wang, Dimitris N. Metaxas ;

Abstract


"Multi-agent trajectory forecasting has recently attracted a lot of attention due to its widespread applications including autonomous driving. Most previous methods use RNNs or Transformers to model agent dynamics in the temporal dimension and social pooling or GNNs to model interactions with other agents; these approaches usually fail to learn the underlying continuous temporal dynamics and agent interactions explicitly. To address these problems, we propose Social ODE which explicitly models temporal agent dynamics and agent interactions. Our approach leverages Neural ODEs to model continuous temporal dynamics, and incorporates distance, interaction intensity, and aggressiveness estimation into agent interaction modeling in latent space. We show in extensive experiments that our Social ODE approach compares favorably with state-of-the-art, and more importantly, can successfully avoid sudden obstacles and effectively control the motion of the agent, while previous methods often fail in such cases."

Related Material


[pdf] [DOI]